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Ambient-temperature 13C linewidth (LW) and transverse relax-
ation (T 2

C) data are presented for the natural-abundance crystal-
line carbons of linear polyethylene (LPE) under CW proton de-
coupling conditions and magic angle spinning (MAS). This
linewidth behavior typifies that seen for rigid methylene carbons
whose attached protons are also strongly coupled to other protons.
These data are presented for two LPE samples (unoriented, melt-
crystallized and uniaxially oriented, extruded) as a function of
several parameters including static field (1.4 T < B0 < 9.4 T),
proton decoupling field strength (38 kHz < n1

H < 90 kHz), MAS
frequency (0.5 kHz < nr < 8 kHz) and RF frequency offsets from
resonance (24 kHz < Dnoff < 4 kHz). It is the ubiquitous nature
of off-resonance proton irradiation (ORPI) (arising from fixed or
rotationally dependent deviations from the true proton resonance
condition) which provides the focus for this work. Corresponding
contributions, LW(ORPI), to the total LW are treated within the
general framework of the effective-field picture of CW decoupling.
Then, considering the presence of spin fluctuations characteristic
of the strongly-dipolar-coupled protons of LPE, LW(ORPI) can be
traced to orbit-dependent T 2

C contributions to LW. Important
dependences demonstrated and discussed include: (1) For “off-
resonance” decoupling, there is a quadratic dependence of
LW(ORPI) on (Dnoff /n1

H) and there is a strong dependence of the
corresponding parabolic coefficient on nr. From the latter depen-
dence, characteristic times for spin fluctuations are also estimated.
(2) For “on-resonance” decoupling, LW(ORPI) is proportional to
(n1

H)22 and shows very little sensitivity to nr. These LW(ORPI)
contributions become more important at higher B0 since the prin-
ciple reason for ORPI is the chemical shift anisotropy (CSA) of the
13C-bonded protons. The difference in sensitivities of LW(ORPI)
to nr for the off-resonance and the on-resonance cases is traced
back, respectively, to the scalar property of Dnoff for RF frequency
offsets and to the tensorial character of the proton CSA. Contri-
butions from LW(ORPI), possibly much larger than those seen in
LPE, can be expected when protons near 13C nuclei sense any
non-scalar, rotor-position-dependent magnetic fields, e.g., (a) local
dipolar fields associated with third, magnetic nuclei or (b) perturb-

ing magnetic-susceptibility fields arising from paramagnetic or
ferromagnetic inclusions in a sample. By understanding the con-
tributions to LW in LPE, one can forecast much more precisely
what the potential benefits will be from new decoupling schemes
like the recently reported “two-pulse phase modulation” (TPPM)
since TPPM is designed to reduce LW(ORPI). Aside from
LW(ORPI) contributions, the experimental LW data cover param-
eter space where another broadening mechanism, namely, MAS-
assisted dipolar fluctuations (MADF), is seen. This mechanism,
also recognized by others, creates a T 2

C-type linewidth contribu-
tion which increases rapidly as n1

H decreases and which addition-
ally has some orbit dependence. If the current trend in 13C
CPMAS is toward higher B0 and nr, the nr-dependent MADF
contributions can easily dominate LW relative to the B0-depen-
dent LW(ORPI) contributions. One can avoid serious MADF
broadening; however, the minimum acceptable values of n1

H for
good decoupling rise rapidly with B0. Finally, a few LW measure-
ments are made on methyl-a-D-glucopyranoside tetraacetate
(MGT), a rigid, polycrystalline material containing carbons with 0,
1, 2, and 3 attached protons. The behaviors of the methylene,
methine, and methyl carbons at 9.4 T are compared with the
behavior of LPE. © 1998 Academic Press
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I. INTRODUCTION

Good resolution in CPMAS spectra is very desirable. With
the trend toward performing CPMAS experiments at higher
static fields, one may encounter mechanisms for degrading
resolution which were not so important at lower fields. The
challenge for finding ways to circumvent these mechanisms is
ever present. Recently (1), a phase modulation scheme, called
two-pulse phase modulation (TPPM) was shown to give sig-
nificant improvement in resolution at 9.4 T for strongly cou-
pled systems. Even more recently (2), Ernstet al.demonstrated
experimentally and calculated theoretically the behavior of the1 To whom correspondence should be addressed.
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15N spectrum in an isolated, strongly coupled two-spin (15N–
1H) system. In the latter case, proton spin-exchange with other
protons is slow so that second-order couplings between the
heteronuclear dipolar interaction and the proton chemical shift
anisotropy create significant splitting and broadening of the
15N resonance. The motivation for the latter study was to
understand and exploit this second-order effect and show how,
using TPPM, one may eliminate these second-order effects.

Contributions to solid-state linewidths in13C CPMAS spec-
tra have varied origins (3–5), and the presence or absence of
molecular motion is often important for determining linewidths
(3–7). In this paper, we are more concerned with those mech-
anisms contributing to linewidth for the rigid lattice where
motional contributions are negligible. One such mechanism
which has been recognized (1, 2, 4, 5, 8–12) as contributing to
linewidth is off-resonance proton irradiation (ORPI) and some
efforts (10–12) have focused specifically on materials which
have resonance offsets traced to large magnetic-susceptibility
perturbations. It is now well recognized that good decoupling
of the heteronuclear (we will assume13C–1H nuclei in this
paper) dipolar interaction requires that one be “on-resonance”
for the proton. Each proton, however, at any point in time,
might be slightly “off-resonance” because of (a) varied isotro-
pic shifts for different protons, (b) chemical shift anisotropy
(CSA) for each proton, (c) field variations (large in paramag-
netic materials or materials with ferromagnetic inclusions)
arising from both isotropic and anisotropic bulk magnetic
susceptibility effects, (d) inhomogeneities in the applied field,
and/or (e) dipolar fields originating from a third nuclear spe-
cies. Given that at least the first three of the five foregoing
effects scale with the static field, one will have to pay more
careful attention to this mechanism at higher fields.

In this paper, we present extensive data on resolution in
crystalline polyethylene (PE), which is an example of a natu-
ral-abundance carbon population in a strongly coupled system.
All carbons are chemically identical methylene carbons whose
dominant dipolar interaction is heteronuclear and stems from
their attached protons. Each of the protons, on the other hand,
while strongly coupled to its geminal partner at 0.178 nm, has
4 other nearest neighbors at a distance of about 0.25 nm and 11
more within 0.31 nm. Thus, the network of coupled spins is
large. All of our data are taken with CW irradiation of the
protons. A substantial portion of these data was presented at
the Experimental NMR conference in 1990 and we have not
published our results previously because we did not understand
certain phenomena associated with on-resonance decoupling;
we think we understand them better now. Data were taken over
a range of static fields from 1.4 to 9.4 T, over RF fields from
38 to 90 kHz, over spinning speeds from 0.5 to 8 kHz, and over
RF frequency offsets up to 4 kHz. We felt that these data would
be a useful contribution to the general discourse on resolution,
since there are some features which should be appreciated, at
least qualitatively. Also of interest is the fact that this study

reveals something about the nature of spin fluctuations in a
strongly coupled spin system.

We adopt a very simplified physical picture for off-reso-
nance decoupling, knowing that the mathematical framework
for the more exact theory has been presented before (8). The
simple view is that one is trying to use RF irradiation to make
the expectation valueŝIzi& of the proton spins as close to zero
as possible during proton irradiation (z is defined as parallel to
the static field). A13C nucleus, which we assume to be isolated
from other13C nuclei, senses protons at distancesri because it
is coupled to the protons through theresidualdipolar interac-
tion, HDr

IS (in rad/s), given by

HDr
IS 5 ~m0/4p ! O

i

gCgH\ ~r i !
23~1 2 3 cos2u i !Sz^I zi&

5 O
i

vDi Sz^I zi& , [1]

where, for a dilute, natural-abundance methylene carbon con-
sidered here, with spinSz, the dominant interactions will stem
from the two attached protons. Other constants in Eq. [1] have
their usual meanings and are given in SI units. Equation [1]
expresses the idea that for the heteronuclear interaction the
dominant interaction takes place between thez-components of
the respective spins. (We will, for the time being, ignore the
second-order shift and broadening (13, 14) arising from non-
secular terms of the heteronuclear dipolar coupling; these ef-
fects become very small at high fields.) From Eq. [1] we can
adopt four immediate perspectives. First, all perturbations on
the 13C resonance arising from Eq. [1] are, in a real sense,
“filtered” through vDi, which includes angular dependence.
While the focus of the effort to achieve better resolution via
better decoupling strategies is to manipulate only the proton
spins (thê Izi& term), the carbon is influenced by this term in a
more complicated way, namely, via the residual proton local
field, vDi ^I zi&. Second, the sources of broadening (4, 5) asso-
ciated with the13C environment in the absence of the proton
dipole moments will be unaffected by manipulating the proton
spins; such broadening includes magnetic field inhomogeneity,
anisotropic bulk magnetic susceptibility (ABMS) effects, con-
formationally induced chemical shift dispersions (15, 16),
shifts arising from inequivalences in crystal packing (17), etc.
This second point is intuitively obvious; nevertheless, some
improvement in resolution through the manipulation of proton
spins is observed, e.g., in paramagnetic materials with large
susceptibilities (10–12). Large susceptibility shifts have a di-
rect effect on both the proton and the13C resonances. In
addition to this direct shift, the13C resonances are broadened
because off-resonance proton irradiation causes^Izi& values to
become appreciable, thereby making contributions from Eq.
[1] large. The latter type of broadening is one that can be
altered with different proton irradiation strategies. Given that
the separation of the “Pake doublet” (18) for an isolated,
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unirradiated13C–1H spin pair separated by 0.11 nm is about 22
kHz, a perspective on effective decoupling is that one would
like |̂ Izi&| to be no more than about 1023 to 1024 times its
unperturbed value of 0.5. Thus, effective decoupling requires a
very high degree of averaging.

A third perspective about Eq. [1] is that magic angle spin-
ning (MAS) will, in general, cause the proton resonance offset,
Dvoff, arising from the five sources previously mentioned, to
be modulated. In the limit of a proton RF field, large compared
with the 13C–1H and 1H–1H dipolar interactions and large
compared with the other resonance offsets as well,

|^I zi&| < 0.5~Dvoff /v1H! , [2]

where v1H is the on-resonance angular proton nutation fre-
quency associated with the proton RF field. Figure 1 illustrates
this concept using the familiar “effective-field” picture (19) of
proton irradiation in the rotating frame of the proton RF. When
v1H is much larger thanvDi, voff, andvDij , the dipolar cou-
pling between protons, then the protons are, to a good approx-
imation, quantized alongveff, the “effective field,” which is the
vector sum ofDvoff and v1H. The projection,Izi, of such a
quantized proton spin in the direction of the static field is
approximately (Dvoff /v1H)Iz9i, wherez9 lies alongveff. If, in
this picture, the lifetime of theIz9i states is very long, then the
13C resonance, at any point in the rotor cycle, would be shifted
by the amountDvs, where

Dvs 5 O
i

~vDi Dvoff /v1H!I z9i . [3]

With all values ofIz9i in the high temperature approximation
taken into account,Dvs gives rise to a resonance pattern
symmetric about that instantaneous13C resonance position,
vC, which would pertain in the absence of the proton–carbon

dipolar interaction. For example, a simple splitting (or a min-
iature Pake pattern (18)) would be associated with an isolated
13C–1H pair in a static single crystal (or in a static powder
sample). With MAS,vC, vDi, andDvoff, in general all become
time dependent and if the MAS average ofvC has no appre-
ciable dispersion, when averaged over all such carbons in the
sample, then the resulting lineshape will be governed by the
MAS average ofDvs. As has been amply documented (2),
sincevDi is a second-rank tensor, the product in the numerator
of Eq. [2] will, in general, correspond to a sum of tensors of
different ranks. For example, ifDvoff is also second rank (e.g.,
supposeDvoff is the proton CSA tensor), then the product
consists of the sum of tensors of ranks 0, 2, and 4. MAS only
averages to zero the part of the product which has rank 2. The
part having rank 0 is unaveraged by MAS and gives rise to a
fixed splitting, i.e., shifts whose sign depends on the sign ofIz9i;
the part having rank 4 is partially averaged and leads to an
inhomogeneous line broadening. On the other hand, ifDvoff is
simply an offset of the proton transmitter, thenDvs is a pure
second-rank tensor and MAS averages it to zero. Isotropic bulk
susceptibility effects give rise to aDvoff which is a second-
rank tensor; anisotropic bulk magnetic susceptibility produces
a Dvoff which includes tensorial character of orders 0, 2, and 4
with the result thatDvs will be even more complex. Finally,
magnetic field inhomogeneity is not confined to a tensor of a
particular order. Thus, the influence of MAS is not simple, and,
in general, MAS provides only incomplete averaging when the
lifetime of theIz9i spin state is long compared to a rotor period.
Implementation of double rotation (20) (DOR) or dynamic
angle spinning (DAS) techniques (20–22) which simulta-
neously average over second- and fourth-order tensors have
been shown (2) to be effective in this context. Table 1 sum-
marizes the tensorial rank, typical range, andB0 dependence of
various sources of resonance offset.

The above scenario including the influence of MAS averag-
ing is predicated on there being long-lived proton spin states.
But, in strongly coupled systems, irradiated on-resonance, fluc-
tuations of the proton spins along their quantization axes, i.e.,
along veff, occur rather briskly, i.e., about half as fast as the
fluctuations along the static-field direction in the laboratory
frame (the secular proton–proton dipolar Hamiltonian in the
rotating frame is halved relative to the Hamiltonian in the
laboratory frame (8)). Indeed, in the usual application of
CPMAS NMR, it is recognized that resolution is greatly aided
(23) by these fluctuations. The time dependence of the proton
spin is not random (24), but is a complex behavior of a
many-body spin system undergoing mutual spin exchange
while conserving overall rotating-frame Zeeman polarization.
If one looks at a particular spin, however, one might expect the
fluctuations to have considerable random qualities. If, in Eq.
[1], the time average of̂ Izi& were identically 0, then this
fluctuation, if rapid enough,would average to 0 (or “de-
couple”) the perturbing interaction given by Eq. [2]. In the
limit where this fluctuation time is rapid, relative to the rms

FIG. 1. Effective-field picture for a proton spin,Ii, in the presence of an
RF field of amplitude,v1

H, and resonance offset,Dvoff. The effective field,veff,
defines the direction,z9, along which the proton spin is quantized (Iz9i).
However, any13C nucleus near this proton interacts most strongly with the
“static” projection ofI i, I zi, which lies alongB0.
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couplings given by Eq. [3], then one would be in a “weak
coupling” regime where the fluctuations would create an un-
certainty broadening in the linewidth, thereby giving rise to a
T 2

C(ORPI) of the general form

LW(ORPI)5 @pT 2
C(ORPI)]21 } O

i

~vDi ^I zi&!
2Ji ~0! , [4]

whereJi(0) is the spectral density of fluctuations at zero fre-
quency for protoni and LW(ORPI) is the corresponding ho-
mogeneous contribution to the observed linewidth arising from
off-resonance effects.

The issue of whether the time average of^Izi& is zero is
interesting to consider before we look at the data. Over long
times, the high temperature approximation forces^Izi& to aver-
age to zero to a degree beyond our ability to detect it. However,
in the case we have before us, there are characteristic times,
such as the rotor period,Tr, over which it is important to
understand the completeness of the averaging of^Izi&. Each
carbon has a statistically distributed local Zeeman polarization
associated withn of its closest neighbors.Since spin exchange
is conserving of total polarization,one might well suppose
that, averaged over any given time,^Izi& for a proton bound to
a 13C nucleus would approximately reflect the averageIz value
of the proton spins over some corresponding radius. One would
further anticipate, based on statistical arguments alone, that the
longer the time of averaging, the larger the number of spins
whose conserved total spin contributed to that average; hence,
the closer to zerôIzi& would become. The “diffusive” nature of
polarization transport in dipolar-coupled spin systems, such as

that of the protons, may imply that the rate of this final decay
toward zero of the statistical fluctuations is relatively slow.

As one can see from Eqs. [2] and [3], one can consider
resolution to be degraded from ORPI effects through inho-
mogeneous broadening (Eq. [2]) or homogeneous broaden-
ing (Eq. [3]). Obviously, in a case like LPE, one cannot
expect the inhomogeneous view to be correct since we know
the spins are strongly coupled and we know that strong
dipolar fluctuations are present (4, 25). In fact, for a static
oriented (OR) LPE sample with unique axis alongB0, the
characteristic spin fluctuation time,tsL, pertaining to the
laboratory frame,is deduced (25) to be 24ms. Moreover,
spin geometry at that particular orientation is such that
proton spin flips within the13CH2 group do not contribute to
tsL. (Other estimates (4), tsL 5 16 to 18ms, have also been
offered for LPE and OR-LPE samples in the presence of
MAS, but, as will be seen, the analysis used to obtaintsL

was not entirely appropriate.) For the problem addressed
here, we must consider the characteristic fluctuation time,
ts, in the rotating frame. For larger values ofn1

H, we expect
that ts 5 2tsL.

To the degree that fluctuations do not completely average
^Izi& to zero over a rotor period, i.e., over a few timests, one
might take the view that some portion of the ORPI-related
influence on linewidth is subject to coherent averaging via
MAS itself or possibly TPPM (1). Then it becomes a question
of particular interest to understand the origin of13C linewidths
under “on-resonance” CW decoupling and how spinning speed
or the frequency of TPPM modulation influences these line-
widths. Unfortunately, we do not have access to the hardware
whereby flexible (1) TPPM sequences can be implemented. So
the application of schemes like TPPM will be left to others.

EXPERIMENTAL

NMR Spectrometers, Pulse Sequences,
and RF Field Calibrations

Data at 1.4 T included herein have been published and
described previously (4). We no longer have access to this
electromagnet-based spectrometer. The 2.35 T spectrometer
and probe are non-commercial although the probe incorporates
a 7-mm rotor/stator made by Doty Scientific, Inc. (26). The 4.7
T spectrometer is a Bruker CXP-200 with probe made by Doty
Scientific, Inc. The 9.4 T spectrometer and probe were made by
Chemagnetics; the associated high-power amplifiers were not
manufactured by Chemagnetics. For the longest decoupling
pulses used, RF droop in amplitude on the 2.35 T spectrometer
is too small to measure (,1%); droop on the 4.7 T spectrom-
eter is about 3%, with changes occurring over the entire de-
coupling period. Droop on the 9.4 T instrument is,1% after
a slight change during the first 100ms. There is also longer-
time drifting of RF amplitudes over a few percentage points in

TABLE 1
Different Sources for Instantaneous Departures

from Proton Resonance during MAS

Source Tensor rank Typical range B0 dep.

1. sH dispersion 0 1 ppm 1
2. DsH 2 5 ppm 1
3. x a 2 1.5 ppm 1
4. Dx b 0, 2, 4 1 ppm 1
5. B0 inhomogeneity ? 0.1 ppm ?
6. Het. dipolar:vX–H 2 ? (kHz)c 0

Note.Included are the tensorial rankof the associated perturbing magnetic
fields at a proton nucleus,estimates of their typical ranges, and the dependence
of these fields onB0.

a Perturbing fields arising from distant spherical volumes having isotropic
bulk magnetic susceptibility. Net instantaneous resonance displacements are
traced to non-ellipsoidal particle shape and the shape and distribution of
neighboring particles. The given range assumes that all particles are diamag-
netic. If particles are paramagnetic or ferromagnetic, then the instantaneous
departures from resonance can become much larger than 1.5 ppm.

b Perturbing fields arising from distant volumes having anisotropic bulk
magnetic susceptibility.

c The local dipolar fields from “third” magnetic nuclei cover a range from 0
to 35 kHz, the latter for protons geminal to19F nuclei.
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this 9.4 T instrument; amplitude stability is about 1% at 4.7 T
and very good at 2.35 T.

We also conducted some experiments at 8.5 T using another
Chemagnetics system. Results are consistent with, but not as
extensive as, the 9.4 T data; hence, we do not report the 8.5 T
results except to note that we measured temperature-dependent
linewidths, on-resonance, for LPE using an RF amplitude,n1

H,
of about 84 kHz and a rotor frequency,nr, of 4 kHz. Observed
linewidths were 29.26 0.5 Hz at both250°C and 23°C. At
70°C the linewidth increased to 32.06 0.5 Hz. The main
inference from these data is that thecontributions to ambient-
temperature linewidths from molecular motion are likely to be
very small for the crystalline carbons of LPE.Other observa-
tions reported herein corroborate this.

Pulse sequences used were very straightforward; each in-
volved the same initial preparation (27) of the 13C magnetiza-
tion associated with the LPE crystalline regions. This prepara-
tion included a 1 ms CPtime, a storage of this13C
magnetization alternately parallel and antiparallel toB0, a 3 s
delay (during which the13C signal from the LPE crystalline
region is selected since the non-crystalline carbons of LPE
fully relax), and a final 90°13C pulse immediately preceding
observation. At 2.35 and 9.4 T, any amplitude and frequency
changes necessary for decoupling occurred immediately fol-
lowing this 90° observation pulse; at 1.4 and 4.7 T, proton RF
characteristics for CP and decoupling were identical. Measure-
ment ofT 2

C follows the same recipe for the preparation of the
magnetization; however, observation is delayed by a variable
decoupling interval of length equal to an even number of rotor
periods; also, a 180°13C pulse is centered in this interval to
refocus 13C chemical shift effects. (At 2.35 and 9.4 T, the
amplitude and/or frequency of the proton RF was altered only
during this interval.)T 2

C is determined from the change of
intensity with echo time, i.e., with interval length. The first
point in these plots is always the amplitude after two rotor
periods; hence, especially at lowernr, any rapid initial decay is
not taken into account.

Measurements of the proton RF amplitudes,n1
H, were

made by calibrating one RF field, usually near 70 kHz, by
means of determining the lengths of 180° and 360° proton
pulses. The expected null signals accompanying such pulses
were detected indirectly via the13C signal, obtained by CP,
following these proton pulses. Other values of the proton RF
field were measured by monitoring the ratios of secondary
amplitude measurements, referenced to the corresponding
measurement at the calibrated field. These secondary mea-
surements were made with an oscilloscope in several ways,
namely, via a weakly coupled, fixed antenna (2.35 T),
monitoring through the13C probe port (4.7 T), and forward-
power measurements using an in-line directional coupler
(9.4 T). Adjustments were made at 9.4 T to account for the
initial small-but-rapid change in RF level during a pulse.
Absolute errors (95% confidence level) in the measurement
of RF levels obtained in this way (neglecting drifts in

amplitude), are estimated to be62%; relative errors asso-
ciated with the oscilloscope readings are an additional61%.

Materials

Unoriented linear polyethylene (LPE) samples were ma-
chined from melt crystallized plugs of NIST’s standard refer-
ence material, SRM 1475 LPE (Mn 5 18,300 andMw 5
52,000). The oriented LPE (OR-LPE) was obtained from Ian
Ward and was extruded through a conical die at 90°C with a
draw ratio of 16. This material has uniaxial orientation; the
draw direction is placed parallel to the rotor axis. The OR-LPE
starting material is a linear PE withMn 5 25,500 andMw 5
135,000. Samples were machined to the appropriate ID of the
rotors, 6.0 mm for the 2.35 and 4.7 T rotors and 4.5 mm for the
9.4 T rotor. Sample lengths were limited to approximately 0.6
times the RF coil length. The methyl-a-D-glucopyranoside
tetraacetate (MGT) was a commercial, polycrystalline sample
obtained from Dr. B. Coxon at NIST; this material was used as
received.

RESULTS

In this section we mainly present the phenomenology. In-
terpretation will be the focus of the Discussion. We will use the
abbreviation LW to refer to linewidths (full width at half
height). Since we will separately present data using on-reso-
nant and off-resonant proton irradiation, we will distinguish the
LW associated with “on-resonance” or “off-resonance” proton
irradiation by the subscripts “n” or “f,” respectively; e.g., the
observed linewidths are LWn(obs) and LWf(obs). We will also
freely substitute symbols usingn (in Hz) corresponding to
previously definedv terms (in rad), e.g., 2pn1

H 5 v1
H. Nearly

as many measurements were conducted on the OR-LPE sam-
ples as were performed on the LPE samples. For clarity,
however, a much smaller portion of the OR-LPE data will
appear in the figures, relative to the LPE data.

Spectra

Figure 2 shows a typical spectrum for crystalline LPE (8
scans), taken at 2.35 T withn1

H 5 71 kHz. The absence of any
downfield intensity verifies the effectiveness of the 3 s delay
time in Torchia’s (27) T1

C method, thereby eliminating signals
originating from the non-crystalline region as well as minimiz-
ing signals from certain interfacial regions (28). This lineshape
is not Lorentzian; a Lorentzian fit yields a line whose peak is
about 10% higher and whose wings are slightly more intense.
The linewidth shown in Fig. 2 is 7.40 Hz while a Lorenztian fit
gives 6.55 Hz. The linewidths reported here are actually mea-
sured at half height; they are not the widths from Lorentzian
fits. Qualitatively, deviations from Lorentzian shapes ranged
from zero to “modest,” where the largest deviations were seen
using off-resonant irradiation; the deviations were greater for
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irradiation on one side of resonance, usually the downfield side
at higherB0.

Off-Resonance Linewidth Behavior

Much is recognized (4, 5, 8, 9) regarding the influence on
the carbon linewidth when protons are irradiated off-reso-
nance. We defineDnRF to be the deviation (in Hz) from then*RF

where LW(obs) is a minimum; we presume thatn*RF is at or
near the true isotropic-average proton resonance. Experimen-
tally it is found (4, 9), and theoretically it is predicted (8), that
in the presence of proton spins whose projections alongveff

fluctuate as a result of spin exchange, there should be a qua-
dratic dependence of linewidth onDnRF according to the equa-
tion

LWf (obs)5 a 1 b~DnRF!2 5 a 1 LWf(ORPI), [5]

where a 5 LWn(obs), b is the parabolic coefficient, and
LWf(ORPI) is identified with the quadratic term. In addi-
tion, the effective field picture of Fig. 1 predicts that this
coefficient,b, should have a dependence on (n1

H)22 in the
limit of large RF fields (see Eqs. [2] and [4]).

Figure 3 shows the expected quadratic dependence of line-
width on DnRF for five cases at 2.35 T. It is on the basis of a
fit to a full curve (both positive and negative values ofnRF) that
n*RF is established. Not shown is the observation that full curves
for LPE and OR-LPE do not give the samen*RF values.
Whereas the13C resonance positions remain fixed, then*RF

value for OR-LPE is about 0.6 ppm higher than that for LPE.
We will discuss the origin of this apparent shift later. Three
other points are qualitatively illustrated. First, at a fixednr, the
coefficient,b, decreases whenn1

H increases, as just discussed.
Second,b decreases asnr increases at fixedn1

H, a point which
may not be widely recognized. Third, for the samenr andn1

H,

the oriented sample (OR-LPE) has a smallerb than the melt-
crystallized, unoriented material. Note that we will use the
designation “LPE” to refer exclusively to this unoriented,
melt-crystallized sample. Also, by virtue of being uniaxially
oriented with its unique axis parallel to the rotor axis, the
OR-LPE should behave like a single crystal in that for all
crystalline carbons, only one orbit of orientations is explored
during each rotor cycle. Therefore, in the sense that the OR-
LPE sample represents a single orientation within the LPE
sample, Fig. 3 demonstrates the existence of anorientation-
dependent dispersionof LWs within the LPE sample.

Figures 4–6 focus on the parabolic coefficient,b, in Eq. [5].
Figure 4 shows the dependence, at 2.35 T, ofb on nr at several
values ofn1

H. Also shown is a test for the uniformity of that
dependence ofb on nr. Each curve is multiplied by a constant
such that the initial value is 12. From the lack of any systematic
trend in the distribution of points at any given value ofnr for
these “scaled” curves, we conclude that within experimental
error, the fractional change in b upon changingnr is indepen-
dent ofn1

H from 44 to 71 kHz.
Figure 5 tests the hypothesis that, at a givennr, b is propor-

tional to (n1
H)22. It is shown that the dependence ofb on (n1

H)22

is quite linear forn1
H from 44 to 71 kHz; however, for reasons

that we do not understand, an extrapolation of the slopes in Fig.
5 suggests thatb would become zero, independent ofnr, at a
finite value ofn1

H, namely'140 kHz, rather than at infinite RF
power. Nevertheless, Fig. 5 indicates thatb is approximately
proportional to (n1

H)22.
Figure 6 demonstrates two points. First,b has no signif-

icant dependence onB0, in keeping with the idea that when
DvRF dominatesDvoff (see Eqs. [2] and [4]), there is no

FIG. 3. Observed linewidths at 2.35 T as a function of relative decoupler
frequency for the samples and conditions given in the legend. Parabolic shape
defined in Eq. [5] is generally found, but the parabolic coefficient,b, depends
on nr andn1

H. In addition, contrast in the OR-LPE and LPE behavior indicates
that b is orbit-dependent. Lines through the points are parabolic fits.

FIG. 2. Eight-scan lineshape for the crystalline carbons of linear polyeth-
ylene at 2.35 T. On-resonance decoupling is used;n1

H 5 71 kHz andnr 5 2.0
kHz. Full width is 7.40 Hz; best Lorentzian fit gives 6.55 Hz. The lineshape is
quite symmetric under these conditions.
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explicit reason to expect a dependence onB0. Recognize,
however, that in the sense thatb is a strong function ofn1

H,
the very close agreement, in magnitudes, shown between the
9.4, 4.7, and 2.35 T LPE data sets is well within experi-
mental error, given the stated uncertainty in the absoluten1

H

calibration at each field. Second, even though the OR-LPE

sample has smallerb’s, relative to the LPE sample, for
comparable conditions, the overallshapeof the dependence
of b on nr is similar.

On-Resonance Linewidth Behavior

Figure 7 shows the dependence of linewidth onn1
H at 2 kHz

MAS for both LWn(obs) (see Fig. 7a) and its homogeneous
contribution, LWn(T 2

C) (see Fig. 7b) as measured by the rotor-
synchronized, single-echo pulse sequence. Data at static fields
ranging from 1.4 to 9.4 T are included. Since the observed
linewidth, is, among other things, a function of the inherent
homogeneity of the magnet, a measure of this homogeneity is
provided in the legend of Fig. 7a via the observed adamantane
linewidth, LW(A). Note the different vertical scales for Figs.
7a and 7b.

Several qualitative deductions can be made, based on Fig. 7.
First, the most striking observation is the strong dependence of
LWn(obs) onB0. Note especially the increasedn1

H dependence
at higherB0, a trend reflected in the LWn(T 2

C). Second, while
there is a monotonic increase in the LWn(T 2

C) for LPE as a
function of B0 at any givenn1

H, LWn(obs) shows some non-
monotonic behavior between 1.4 and 2.35 T, notwithstanding a
consideration of the different adamantane LWs. Third, both the
observed linewidth and its homogeneous contribution are
smaller for OR-LPE than for LPE; while not shown, this is true
for data at all values ofB0. Fourth, at lower values ofn1

H, there
is a very rapid increase in linewidth, similar to that reported
previously for LPE (4), and it is strongly related to phenomena
seen in other systems (29). This onset is most dramatic at lower
B0. At 2.35 T, this rapid increase in linewidth occurs for LPE

FIG. 4. Dependence of the parabolic coefficient on spinning frequency at
2.35 T for LPE at the various RF field strengths indicated in the legend. A
rescaling of these coefficients such that fornr 5 500 Hz, all coefficients are the
same, shows that the fractional change in this coefficient withnr is not sensitive
to n1

H. Lines through the points are interpolated and for visual clarity only.

FIG. 5. Change of the parabolic coefficient, at 2.35 T, with the inverse
squares of the RF field strengths for the variousnr given in the legend. Certain
values forn1

H are indicated by the arrows. Curves are reasonably linear forn1
H

. 44 kHz, as expected from the effective-field picture. However, extrapolation
of the linear portions of these curves gives intercepts, short of the origin, in the
vicinity of n1

H 5 140 kHz. We expected the intercept to be at the origin.

FIG. 6. Parabolic coefficients for LPE and OR-LPE as a function ofnr at
the different static fields given in the legend. There is no importantB0

dependence, as expected. The difference between the OR-LPE and LPE data at
any givennr is indicative of the orbit-dependent dispersions of linewidth in the
polycrystalline LPE sample. Lines are interpolated.
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in the vicinity of n1
H 5 40 kHz and for OR-LPE about 4 kHz

lower.
Prompted by ideas set forth in recent publications (1, 2), we

use Fig. 8 as a test to determine whether theB0 dependence in
Fig. 7 can be understood in terms of, say, the chemical shift
anisotropy (CSA) of the protons. In this scheme, the CSA
would generate the necessity for irradiating the protons slightly
“off-resonance,” depending on rotor position. As discussed in
the Introduction in connection with Eq. [3], the angular depen-
dence of the CSA interaction, relative to, say, the fixed char-
acter ofDnRF, changes the influence of MAS averaging in this
problem. Nevertheless, even though the angular dependence is

more complicated for the CSA case than for a fixed offset, a
signature that off-resonance effects are important, even in the
on-resonance case, is the fact that the (n1

H)22 dependence,
already seen for LWf(ORPI) in Fig. 5, would be a characteristic
common to both cases. In Figs. 8a and 8b such plots are shown
for the 2 kHz MAS data of Fig. 7. Indeed there is a reasonably
linear region for the highern1

H values for all of the data sets.
Moreover, the slope is a strong function ofB0. The linearity of
these plots along with the strongB0 dependence is a solid
indication that an ORPI mechanism is partly responsible for the
observed LWs. We thus define LWn(ORPI) to be the portion of

FIG. 8. Observed on-resonance linewidths at 2 kHz MAS plotted against
the inverse square of the RF field strength for the samples andB0 values given
in the legends. The 9.4 T data have been plotted separately in (a) to allow a
more favorable vertical scale for displaying data at the lowerB0 values in (b).
Adamantane linewidths are included in the legend. As indicated, plots are quite
linear at all B0 values forn1

H above about 50 kHz; such behavior is very
consistent with the effective-field picture. Ordinate intercepts in these samples
should represent the non-ORPI contributions to linewidth, including static field
inhomogeneity, plus whatever otherT 2

C-based contributions are independent
of n1

H. The latter contributions are less than 2 Hz in LPE.

FIG. 7. Observed on-resonance linewidths (a) and their homogeneous
contributions (b) at 2 kHz MAS as a function ofn1

H for the various samples and
B0’s given in the legends. Also in the legend in (a) is the observed linewidth,
LW(A), for adamantane for a sample of the same size. Note the different
vertical scales in (a) and (b) along with the strong dependence of both the
observed linewidths and their homogeneous contributions onB0. Note also the
steep rise in linewidth at lowern1

H and the smaller linewidths associated with
the OR-LPE carbons, relative to the LPE carbons under the same conditions.
Lines are interpolated.

95OFF-RESONANCE PROTON DECOUPLING ON-RESONANCE



the linewidth which depends on (n1
H)22. TheB0 dependence of

LWn(ORPI) as well as the remaining portion of LWn(obs) is
the subject of Fig. 9.

In Fig. 9b, the slopes of the data of Fig. 8 (plus some slopes,
not shown, for the OR-LPE sample) are plotted versusB0

2. The
linearity of this plot is very strong proof that the interaction
which produces the off-resonance behavior is proportional to
B0 (Eqs. [2] and [4]). The proton CSA, therefore, becomes a
very likely candidate for this interaction.

In Fig. 9a, we turn our attention briefly to the non-ORPI
contribution to LWn(obs). At least at 1.4, 2.35, and 4.7 T, the

non-ORPI contribution is larger than the ORPI contribution.
Plotted againstB0 is the difference between the intercept line-
widths of Fig. 8 (the part of the linewidth which doesnot scale
with (n1

H)22) and the corresponding adamantane linewidths
observed for a sample similar in size to the LPE sample. This
difference should represent contributions from (a)T 2

C pro-
cesses which are independent ofn1

H; (b) inhomogeneous broad-
ening arising from, say, any anisotropic magnetic susceptibility
of LPE, distributions of isotropic carbon chemical shifts in the
crystalline regions, and variations in the magic angle from
sample to sample; and (c) second-order dipolar shifts (13, 14),
which are very weak in adamantane owing to the fast rotation
of each adamantane molecule on its lattice site. Contributions
which areexcludedfrom the difference linewidth of Fig. 9a
include magnet inhomogeneity and contributions from RF in-
homogeneity via Bloch–Siegert-shift (30) broadening. (Note
that by assigning a fixed value to the adamantane linewidth, we
are assuming that the Bloch–Siegert effects are negligible, a
reasonable assumption as we will discuss later. For now, suf-
fice it to say that such a contribution to line broadening
depends on (n1

H)2; hence, if important, such a contribution
should be very evident for the leftmost data points in Fig. 8.
The data do not give evidence of such a contribution.)

The points in Fig. 9a do not show very linear behavior,
especially for the point corresponding to aB0 of 1.4 T. The
choice to plot these difference linewidths againstB0 shows our
bias that the most likely origin for this “excess LW” is inho-
mogeneous contributions arising from either anisotropic bulk
magnetic susceptibility or distributions of isotropic carbon
chemical shifts; both influences produce line broadening pro-
portional toB0. The non-monotonic behavior of the point at 1.4
T may well arise from second-order dipolar effects (13, 14)
which are greatly amplified at lowerB0 values owing to their
B0

22 dependence. The importance of possible,n1
H-independent

contributions to LWn(T 2
C), can be evaluated by subtracting

LWn(ORPI) values obtained from Fig. 8 or Fig. 9b from direct
measurements of LWn(T 2

C) (Fig. 7b). Table 2 shows a break-
down of linewidth contributions, using one set of data at 2 kHz
MAS at each value ofB0. In Table 2, LWn(DT 2

C) is this
n1

H-independent contribution to LWn(T 2
C); LWn(DT 2

C) is small,
i.e., close to 1 Hz, for the largern1

H values, except at 4.7 T. At
this time, we do not understand why this 4.7 T datum is unique;
a repeat measurement gave the same result. Other measure-
ments at 4.7 T, e.g., LWn(ORPI) values, are not suspect in the
sense that they fit the trends at the otherB0 values. Therefore,
we conclude thatT 2

C contributions from, say, fast librational
modulation of the13C–1H dipolar interactions, offer a very
small (,2 Hz) contribution to linewidth. The variable-temper-
ature, 8.4 T linewidth measurements cited under Experimental
further support the insignificance of motional contributions to
linewidth. Also, note that in Table 2, the last column, LWn(inh)
2 LW(A), has a meaning closely related to the quantity plotted
in the ordinate of Fig. 9a.

Having established the existence of the LWn(ORPI) contri-

FIG. 9. Plots, based largely on the 2 kHz MAS data of Fig. 8, which
examine theB0 dependence of (a) the predominantly inhomogeneous contri-
butions to linewidth, corrected forB0 inhomogeneity and distributions of
Bloch–Siegert shifts, and (b) the homogeneous contributions to linewidth
which display a (n1

H)22 dependence. The slopes (see Fig. 8) which are plotted
in (b) capture the strength of the latter contributions at eachB0 value. The
choice ofB0 as the abscissa in (a) is discussed in the text; linearity withB0

2,
illustrated in (b), is very strong evidence that the proton chemical shift
anisotropy is mainly responsible for theB0 dependences seen in Figs. 7 and 8.

96 VANDERHART AND CAMPBELL



bution and its rather simple behavior at higher values ofn1
H at

2 kHz MAS, we now turn to a closer inspection of the behavior
of LWn(obs) as a function ofnr, paying particular attention to
the behavior at lower values ofn1

H.
Figures 10a and 10b, respectively, present 2.35 and 9.4 T

data for LWn(obs) as a function ofn1
H for several different

values ofnr which range from 0.5 to 5 kHz at 2.35 T and
from 1 to 8 kHz at 9.4 T. Note the difference in vertical
scales. One plot for OR-LPE is also shown to illustrate
the generally narrower linewidths of OR-LPE relative to
LPE as well as the implied existence of distributions of
linewidths embodied in the LPE measurements. Two obser-
vations are especially noteworthy in Fig. 10. First, for LPE,
in the range ofn1

H characterized by strong changes in
LWn(obs), the values ofn1

H, at which comparable linewidths
are observed, increase about 2 kHz (at 2.35 T) and about 3
kHz (at 9.4 T) for every 1 kHz increase innr. This pattern
is quite regular above anr of 2 kHz at 2.35 T and above 4
kHz at 9.4 T; below those values the change ofn1

H with nr is
not as fast. Second, compared to the off-resonance case
where LWf(ORPI) was often dominant and where this con-
tribution underwent a nearly fourfold reduction asnr

changed from 1 to 5 kHz (see Fig. 6), the sensitivity tonr of
LWn(obs) at the higher values ofn1

H is considerably dimin-
ished.

Figure 11 displays the same kind of data as Fig. 10,
except that it does so in a way which may reflect the
spectroscopist’s parameter choices more realistically; i.e.,
spinning speed may be chosen as a variable in setting up
an experiment more often thann1

H. This plot shows the
behavior of LWn(obs) as a function ofnr for various choices
of B0 andn1

H. At higher values ofn1
H, e.g., 71 kHz at 2.35 T,

69 kHz at 4.7 T, and 72 kHz at 9.4 T, LWn(obs) is rather flat,
or even slightly decreasing, in the range ofnr from 1 to 5
kHz; relative flatness from 1 to 8 kHz requires an1

H of 83
kHz at 9.4 T. (Historically, it was thisnr-insensitive behav-
ior, in contrast to thenr-sensitive behavior of LWf(obs),
which puzzled us and caused us to set aside our reporting

of most of these data. We knew of the strongB0 depen-
dence of LWn(obs) and were suspicious that the proton
CSA played a significant role. Nevertheless, we did not
examine this problem in sufficient detail.) Figure 11 illus-
trates two other points, namely, (a) that in the range ofnr

between 1 and 2 kHz, there is often a noticeable linewidth
decrease which may be associated with some MAS averag-
ing, and (b) that increasingnr with insufficient n1

H can ruin
resolution.

DISCUSSION

The data just presented relate to linewidths in a strongly
coupled spin system. There are many facets to the question of
resolution, and we are exploring a limited area in this paper. In
presenting this work, we had these guiding perspectives: First,
if one wishes to improve resolution, one must understand well,
not only the mechanisms of line broadening but also the role
that proton spin fluctuation rates play. Certain strategies for
applying non-CW decoupling are designed to produce a second
kind of averaging which competes against, or is intended to
dominate, the spin fluctuations (1). Therefore, we will attempt
to gain insight into the rate of spin fluctuations. Second, LPE,
we believe, is a material which has reasonable generality. We
anticipate that the LPE data reported herein represents the
general behavior ofa methylene carbon with natural abun-
dance enrichment in a relatively rigid aliphatic solid where
protons are the only other magnetic nuclei.The role, as we
shall see, that proton CSA plays in the determination of on-
resonance linewidths as well as the very limited role that bulk
magnetic susceptibility anisotropy plays will be typical of
aliphatic solids. Also typical is the extent of proton couplings
and the rate of spin fluctuations. Many of the mechanisms
discussed here will also carry over to methylene carbons in
other organic environments even though spin fluctuation rates
may be slower and susceptibility anisotropy may become more
important. Third, it is not so much our intent in this discussion
to present a lot of mathematical detail as it is to understand the

TABLE 2
Analysis of Different On-Resonance Linewidth Contributions (in Hz) for One Set of LPE Data at 2 kHz MAS and Four B0 Values

B0 (T) n1
H (kHz) LWn(obs)a LWn(T 2

C)b LWn(ORPI)c LWn(DT 2
C)d LW(inh)e LW(inh) 2 LW(A) f

1.4 74.8 (30) 9.5 (1) 1.5 (1) 0.7 (1) 0.8 (2) 8.0 (4) 4.0 (6)
2.35 74.5 (20) 7.4 (1) 2.2 (1) 1.3 (1) 0.9 (2) 5.2 (2) 2.2 (3)
4.7 75.5 (20) 14.3 (2) 7.4 (3) 4.1 (4) 3.1 (7) 6.9 (5) 2.4 (7)
9.4 84.1 (25) 29.1 (4) 14.3 (8) 13.1 (10) 1.2 (18) 14.8 (12) 12.8 (15)

Note.Full-range error estimates, in units of the last decimal place, are given in parentheses.
a Observed linewidth (LW).
b LW from measuredT 2

C; [5(pT 2
C)21].

c Portion of LW dependent on (n1
H)22 (from Figs. 8 and 9b).

d The n1
H-independentT 2

C-contribution to LW (5LWn(T 2
C) 2 LWn(ORPI)).

e Inhomogeneous LW (5LWn(obs)2 LWn(T 2
C)).

f Portion of LW(inh) not accounted for by observed adamantane LW (LW(A)).
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phenomenology so that one can avoid, or intelligently make
use of, certain characteristics of line broadening.

Off-Resonance Behavior

As previously mentioned, the behavior of LWf(obs) is fairly
standard (4, 8, 9) insofar as Eq. [5] is obeyed. What was more
intriguing to us was thenr dependence of the parabolic coef-
ficient in Eq. [5] (see Figs. 4 and 6). From a practical stand-

point, the data suggest that fast spinning is desirable since, in
general, a sample has different kinds of protons and one must
choose a decoupling frequency, somewhat off-resonance for
each kind of proton. In Fig. 6, the parabolic coefficient mono-
tonically decreases at least tonr 5 8 kHz; for all of our
observations, faster spinning always led to a further reduction
of LWf(ORPI).

In the effective field picture of Fig. 1 and for largern1
H, ^Izi&

is simply scaled by (Dnoff /n1
H) ' (DnRF/n1

H), thereby giving
LWf(ORPI) in Eq. [4] its dependence onDnRF

2 and (n1
H)22.

From Figs. 3 and 5, this effective field picture seems to be a
decent approximation, at least forn1

H . '47 kHz (albeit the
convergence of the intercepts in Fig. 5 to a point short of the
origin remains puzzling).

FIG. 11. Observed on-resonance linewidths at the lowerB0’s (a) and at 9.4
T (b) as a function ofnr for the samples andn1

H values in the legends. Note the
different vertical scales. The strongly increasing linewidths at highernr for the
lower n1

H values reflect the onset of MADF broadening. The relative insensi-
tivity to nr at highern1

H is a result of theJ(0) term in the expression for
LW(ORPI) in Eq. [10]. The flatness also suggests that, fornr up to 8 kHz in
polyethylene, spinning does not significantly alter the rate of dipolar fluctua-
tions. Lines shown are interpolated.

FIG. 10. Observed on-resonance linewidths at 2.35 T (a) and 9.4 T (b) as
a function of RF field strength for the various samples andnr values given in
the legends. Note the different vertical scales and the fact that in the region of
smallern1

H, the n1
H where a given strong broadening occurs is (1) lower by

about 4 kHz for OR-LPE versus LPE and (2) increases with increasingnr. This
strong broadening is attributed to MAS-assisted dipolar fluctuations (MADF).
This broadening goes from modest to dominant over a relatively small range
of n1

H. Also, (dn1
H/(dnr) at a constant linewidth of, say, 25 Hz in (a) or 90 Hz

in (b), is about 2 abovenr 5 2 kHz in (a) and about 3 abovenr 5 4 kHz in (b).
The MADF influence on linewidth along with the ORPI effects illustrated in
Figs. 7–9 suggests the use of largen1

H for achieving good resolution at higher
B0, especially if one is inclined to increasenr proportionally withB0. Lines
shown are interpolated.
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While experimental data closely adhere to Eq. [5], thereby
underscoring the presence of spin fluctuations in producing
broadening (and the validity of a general expression like Eq.
[4]), the decrease in the parabolic coefficient,b, at highernr

values is better understood from the “static-spin” representa-
tion of Eq. [3]. There it is evident that MAS will coherently
eliminate splittings associated with any isochromat sinceDvs,
in the off-resonance case whereDvoff 5 DvRF, has the simple
angular dependence ofvDi. In other words, the observed de-
pendence ofb on nr is evidence that the coherent averaging
arising from faster spinning is moderating the broadening
influence from the more random spin fluctuations; the impli-
cation is that characteristic times for rotation and for spin
fluctuations are becoming comparable.

We now write down a couple of equations with the sole
purpose of seeking information about the important issue of the
time scale of the spin fluctuations. For an axially symmetric
tensor, such as the dipolar tensor, the angular dependence in,
say, Eq. [1], can be rewritten (31), in the presence of MAS, as

~1 2 3 cos2u i ! 5 Aiccos~vr t ! 1 Aissin~vr t !

1 Biccos~2vr t ! 1 Bissin~2vr t ! , @6#

where the constants are functions ofbi andai, respectively the
polar and azimuthal angles of theith 13C–1H vector in the rotor
frame. Equation [6] simply states thatvDi has a trajectory,
under MAS, which is the sum of terms that fluctuate atvr and
2vr. Therefore, we anticipate that in the simple picture repre-
sented by Eq. [4],T 2

C
f(ORPI) will depend onJ(vr) andJ(2vr),

not J(0). If we postulate (a) that the proton quantization is
determined by the effective field picture, (b) that the rate of
proton spin fluctuations in any given orbit is not dependent on
rotor position, and (c) that the only important term contributing
to T 2

C
f(ORPI)21 is the dipolar term of Eq. [1], then we can

write the following expression forT 2
C

f(ORPI)21,

T 2
C

f (ORPI)21 5 O
i

@~m0/4p!~gCgH\/ri
3!~DnRF/n1

H!#2

3 @I ~I 1 1!/12#@Ai
2J~vr! 1 Bi

2J~2vr!#. @7#

In Eq. [7], J(nvr) is the reduced spectral density for the proton
spin fluctuations andAi

2 5 2 sin22b 5 Aic
2 1 Ais

2 andBi
2 5

sin4b 5 Bic
2 1 Bis

2 . The a dependence of theA and B
coefficients of Eq. [6] can be eliminated becauseT 2

C
f(ORPI)21

depends only on theb-dependent path of a particular orbit;a
determines only the position along a particular path.

It is obvious from Eq. [7] that if the assumptions giving rise
to this equation are appropriate, there will be a lot of hetero-
geneity in theT 2

C
f(ORPI)’s of carbons belonging to different

orbits owing to the range ofAi
2 andBi

2 values. Nevertheless,
we could approximate an averageT 2

C
f(ORPI)21 for LPE in

Eq. [7] by replacing these two quantities by their isotropic

averages, respectively, (16/15) and (8/15). In contrast, for
OR-LPE we have only a single orbit to consider (b 5 p/2)
for the two dominant attached protons, and the only non-
zero coefficient isBi

2 5 1.
Equation [7] applied to the OR-LPE sample offers a very

simple way to examine the spin correlation function because
both13C-bonded protons have the same orbit for13C–H dipolar
interactions and because one is dealing only with the spectral
density at 2vr. In this simple picture, the dependence ofb on nr

for the OR-LPE data in Fig. 6 is exactly that of the orbit-
averaged spectral density function,J(2vr). We digress briefly
to discuss the form ofJ(v).

The mathematical form of the spectral density function,
J(v), associated with fluctuations of the proton spins along
their quantization axis is sometimes (8, 32) described as arising
from a Lorentzian correlation function of the form (11 t 2/
t s

2)21, in which caseJ(v) is given by an exponential function
of the form

J~v ! 5 ptsexp~ 2 |v |ts! . [8a]

Equation [8a] has been found (32) to describe very well the
cross-polarization rates in cubic CaF2 when an RF field of
amplituden1

Ca is applied in the presence of19F nuclei which
have taken on dipolar order via adiabatic demagnetization in
the rotating frame. These CP rates are closely related toJ(v),
the spectral density of the19F spin fluctuations alongB0.
Admittedly, other analyses (33) of these same data, based on
Gaussian memory functions (related to the correlation func-
tions), give similarly good agreement with experiment. The
J(v)’s pertinent to Eq. [7] similarly describe spin fluctuations
along quantization axes, this time in the rotating frame. Again
we rely on the effective time dilation by a factor of 2 in the
rotating frame, relative to the laboratory frame, in the presence
of a strong, resonantn1

H. Theshape,or functional dependence,
of the spectral density functions in the two frames should be
the same for any given substance.

For LPE, we do not necessarily expect the spectral density to
be described by Eq. [8a] since the LPE lattice is not cubic and
since there are fewer strongly interacting protons around each
carbon than there are strongly interacting19F nuclei around
each43Ca nucleus in CaF2. The latter feature helped to ratio-
nalize the Lorentzian form of the correlation function (8).
Nevertheless, experimental evidence (25) of an exponential
spectral density function in LPE has been given for static LPE
samples in the regime of largerv. Here we are dealing with the
regime of smallerv; hence we wish to keep an open mind as
to the shape of the spectral density function at lowerv. Thus,
more from the point of view of computational simplicity than
from particular physical insight, we also considered a Lorent-
zian spectral density of fluctuations,

J~v ! 5 2ts/@1 1 ~vts!
2# . [8b]
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This spectral density would pertain to an exponential correla-
tion function associated, for example, with random, sudden
spin-state changes of those protons attached to the13C nuclei.
Such a model ignores any possible slower fall-off of the
correlation function as a result of the conservation of total local
polarization. Recall that it is not the focus of this paper to
analyze spin-correlation functions in detail. Rather, our goal is
to come to an approximate assessment of the spin lifetimes so
that we can comment further on the time scales available for
implementing decoupling schemes like TPPM.

Figure 12 shows our attempt to use Eq. [7] to match the
shapesof both the OR-LPE and the LPE curves of Fig. 6 (the
parabolic coefficient is proportional toT 2

C
f(ORPI)21) by vary-

ing ts in Eqs. [8a] and [8b]. We considered only the spin
fluctuations of the two bonded methylene protons, assuming
these fluctuations were uncorrelated. The calculated and ex-
perimental curves are normalized to agree fornr 5 1 kHz. For

the LPE calculation, we used the isotropic averages forAi and
Bi. The best fits we could obtain arets 5 33 and 47ms for the
OR-LPE and the LPE, respectively, using Eq. [8b]; 28 and 40
ms were the corresponding best fits using Eq. [8a]. The spin-
state lifetimes, recall, should be about twicets. The fits are
modestly good considering the crudeness of the models, but
neither spectral density function predicts well the slower rate of
decrease of the experimental data at the highernr, even though
Eq. [8b] falls off more slowly than [8a] with increasingv.

In the Introduction, we raised the point that there may be a
local bias to the spin correlation function whereby the tails of
the correlation function might decay quite slowly (and its
spectral density be quite peaked atv 5 0) owing to the
polarization–conservation aspect of the spin fluctuations. The
slower decay of the Lorentzian correlation function and its
exponential spectral density (Eq. [8a]) preserve these ideas
better than the alternate functions considered here. Thus, the
fits in Fig. 12 based on the spectral densities of Eq. [8a] are
more peaked at small values ofnr relative to the fits based on
Eq. [8b]. If we look at the trends in the experimental OR-LPE
and LPE data in Fig. 12 at lowernr, Eq. [8a] seems to fit better.
As noted, however, Eq. [8b] describes the weaker rate of
decrease ofb with nr slightly better at largernr. Hence, the data
do not fully endorse either the exponential or the Lorentzian
spectral densities. The estimates ofts, using both the exponen-
tial and the Lorentzian spectral densities, give modest agree-
ment. Moreover, thets of 48ms for non-spinning OR-LPE (25)
at highv is not necessarily in conflict with the 28 and 33ms
values determined for OR-LPE in Fig. 12, given the different
orientations represented and the fact that fluctuations arising
from proton spin flips within the13CH2 group only contribute
to the spinning OR-LPE data.

One measure of whether we have captured the appropriate
physics is our ability to predict the magnitude ofT 2

C
f(ORPI)21

as well as its shape for the simplest case, OR-LPE. The
T 2

C
f(ORPI)’s calculated from Eq. [7], considering only the

two bonded protons, translate intob values which account
for 65–70% of the experimentalb values over the range of
nr from 0.5 to 5 kHz whents 5 33 ms (J(v) Lorentzian), the
value ofts that gave the best fit to the shape of the curve in
Fig. 12. Forts 5 28 ms (J(v) exponential) the predictedb
values were about 75– 85% of experimental values over the
0.5 to 5 kHz range ofnr. We then explored the possibility
that the inclusion of more distant protons in the sum in Eq.
[7] could close the gap between experiment and calcula-
tions. Inclusion of the four next-nearest protons at 0.214 nm
gave a 10% increase inT 2

C
f(ORPI)21, thereby reducing the

discrepancy to a shortfall of about 25% for the Lorentzian
function and about 12% for the exponential spectral density.
We then looked at the range and numbers of more distant
protons and concluded that a consideration of all protons
could account for no more than a 15% increase over the
T 2

C
f(ORPI)21 calculated for the two bonded protons only.

Hence, although we have not done this much larger calcu-

FIG. 12. Attempts to fit the shape (not the magnitude) of the LPE and
OR-LPE data of Fig. 6. The experimental data represent averages of the
parabolic coefficient, forn1

H 5 71 kHz, taken at the variousB0’s for each
sample. The calculated curves consider only the fluctuations of the two
attached methylene protons; four of the five calculated curves given in the
legend are based on Eq. [7] usingBi 5 1.0 for the OR-LPE andAi 5 16/15,
Bi 5 8/15 for LPE. “Lor” in the legend refers to the Lorentzian spectral density
function of Eq. [8b] and “Exp” refers to Eq. [8a]. Correlation times,ts, are also
given in the legend. The OR-LPE calculation with 2 times is the two-lifetime
Monte Carlo calculation described in the text where the numbers correspond to
shorter spin-state lifetimes for mutual spin flips between the13CH2 pair of
protons and longer spin lifetimes associated with a flip with another, more
distant proton. The most obvious difference between the calculated curves is
the more peaked amplitude atnr 5 0 for the exponential spectral density;
although the 2-lifetime model (whose curve extends only tonr 5 0.5 kHz)
generates a steeper rise at lowernr compared to its Lorentzian, single-lifetime
counterpart. The data support a steeper rise at lownr than would be predicted
by the single-lifetime Lorentzian fits. At highernr, data decrease more slowly
than any of the calculations predict. Normalization of the data to the calculated
curves is such that atnr 5 1 kHz the experimental data are scaled to agree with
the calculated values and both are set to 1.0.The LPE data along with the
calculated curves are displaced vertically by 0.2 for clarity.
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lation, the full exponential spectral density function should
account for about 90% of the experimentally observedb
values over the 0.5 to 5 kHz range ofnr, whereas the
Lorentzian should account for about 80%. Both functions,
therefore, give reasonable agreement, with Eq. [8a] slightly
superior. This outcome is probably satisfactory in view of
the crudeness of the model, especially in that the spin
fluctuations are simply included as a “property” of each
spin, regardless of the couplings of the protons to one
another. (Incidentally, the parallel calculations including
only the two bonded protons of LPE and using the “isotro-
pic-average” coefficients in Eq. [7] yield values ofb which
overestimate the experimental values by about 10 –20% for
J(v) Lorentzian andts 5 47 ms; overestimates range from
25 to 40% forJ(v) exponential andts 5 40 ms.)

This leads us to the other computation ofJ(v) that we tried,
pertinent only to OR-LPE. Our principal reason for questioning
the foregoing spectral density functions was that these func-
tions should also predict the LWn(ORPI) for on-resonance
decoupling. Such predictions fell short by factors of 2 to 3. The
discussion of on-resonance linewidths will be taken up shortly.
However, as part of the discussion of the form ofJ(v), we
include a description of this modified calculation.

We started from the premise that the weakest assumption
embodied in Eq. [7] was the claim that each spin fluctuated
independently. Thus, we ignored the possibility that strong
intramethylene proton–polarization–exchange events (mutual
spin flips) could occur whenever the totalI z (5I z1 1 I z2) was
zero. In an attempt to include this effect of mutual spin flips,
we set up a Monte Carlo calculation for computing the mean
square phase loss for the OR-LPE carbons during an integral
number of rotor cycles. The times between spin flips were
determined by a random number generator and the effective-
field scaling of Eq. [3] was again employed. The overall
correlation function, then, is the superposition of a Lorentzian
correlation function plus a second, broader Lorentzian corre-
lation function which is turned on only whenIz is zero. As a
control for testing the Monte Carlo method for computing
T 2

C
f(ORPI)21, we duplicated, within the approximately 5%

statistical error of our calculation, theT 2
C

f(ORPI)21 values of
Eq. [7] when the two spins were allowed to fluctuate indepen-
dently with only one correlation time. Then, to model the case
where mutual spin flips could occur, we set up the situation
where, in addition to independent spin flips which would
constantly occur with a longer lifetime,tlg, a second shorter
lifetime, tsh, governing the rate of mutual spin flips, was
invoked whenever the totalIz was zero. WheneverIz was zero,
the random number generators determining thetlg and thetsh

state changes acted in parallel; thus, the inverse of the effective
lifetime of each spin in thisIz 5 0 state is (tlg

21 1 tsh
21). The

result of these calculations for OR-LPE was that a fit very
similar to the others shown for OR-LPE in Fig. 12 was ob-
tained with parameters havingtlg 5 160 ms andtsh 5 80 ms.
(To relate these parameters to the earlier result withts 5 33ms

and a lifetime of 66ms, this more complex model yields an
effective lifetime in theIz 5 0 state of 53ms while the lifetime
in the Iz 5 61 states is 160ms.) For OR-LPE it is a feature of
the geometric terms that for theoff-resonance case, the mean
square phase loss accumulates more quickly whenIz 5 0 than
when Iz 5 61; hence the fit to the experimental data depends
more strongly ontsh than ontlg. As a result, the fit is not very
sensitive to modest changes intlg. Also, for nr $ 1 kHz, theb
values, using this two-lifetime model, agreed to within 5% with
those calculated from the single-lifetime Lorentzian fit; signif-
icant relative increases inb for the two-lifetime model were
only seen belownr 5 1 kHz. The relative importance of the
lifetimes in theIz 5 0 or Iz 5 61 states for contributing to
mean square phase loss depends on the dispositions of the two
methylene protons and the value ofn for differentJ(nvr). Thus,
in LPE, some isochromats will haveT 2

C
f(ORPI)’s strongly

influenced bytlg and others, as is in the case of OR-LPE, will
be strongly influenced bytsh. Therefore, if there is indeed a
disparity in the effective lifetimes of the Iz 5 0 and the Iz 5 61
states, owing to intramethylene mutual spin flips, then the
orientation-dependent dispersion in T2

C
f(ORPI)21 could be

significantly larger than that indicated by the range of coeffi-
cients in Eq.[7].

In the foregoing exercises for extracting spin lifetimes from
plots like those of Fig. 6, we have made the implicit assump-
tion that up tonr 5 8 kHz, nr is not influencingts. Other
authors have invoked such a dependence to explain their ob-
servations, e.g., in ferrocene (34). Ferrocene has much weaker,
motionally averaged proton–proton couplings, so it is more
reasonable thatnr influencets. If fluctuations in LPE were a
function of nr, then fluctuations should slow down asnr in-
creases, thereby making MAS averaging even more effective at
the highernr values. This should accelerate the decrease ofb
with nr at highernr; a retardation is observed relative to the
Lorentzian and exponential forms ofJ(v) considered. Thus,
LWf(obs) data do not suggest a lengthening ofts with nr in
LPE up tonr 5 8 kHz. We will also give an argument later,
based on “on-resonance” data, suggesting that there is little, if
any, slowdown in spin fluctuation rates up tonr 5 8 kHz.

Before we leave the discussion about off-resonance line
broadening we reiterate the fact that the off-resonance data
have offered some insight into the time scale of the proton spin
fluctuations. Implicitly we have assumed that these fluctuation
rates are not affected by modest (up to 3 kHz) departures from
resonance, whenn1

H is at least 15–20 times bigger than these
offsets. Similarly, what we learned about spin fluctuations
should also be applicable to the way in which spin fluctuations
are invoked to explain theon-resonancelinewidths.

On-Resonance Behavior

Figures 8 and 9 together establish that, forB0 $ 1.4 T,
LWn(ORPI), which is defined to be the part of the LWn(obs)
which shows the (n1

H)22 behavior, is very nearly proportional
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to B0
2. Moreover, LWn(T 2

C) usually exceeds LWn(ORPI) by
less than 2 Hz; in other words, LWn(ORPI) and itsB0

2 depen-
dence are traceable to aT 2

C process. Recognizing that the
general form forT 2

C(ORPI)21 is the product of the square of
some interaction strength times some linear combination of
spectral density functions, we look for an interaction, linear in
B0, to give rise to LWn(ORPI).

As mentioned in the Introduction, such a candidate interac-
tion has already been discussed in other publications (1, 2, 4).
This interaction is the proton chemical shift anisotropy (CSA).
The corresponding “interaction strength” appropriate to
LW(ORPI) takes the form given in Eq. [3]. This expression
involves the product of the13C–1H dipolar interaction and the
proton CSA. The existence of a CSA means that most of the
time, the protons are being irradiated slightly off-resonance
since, at best, the choice of RF frequency matches the reso-
nance defined by the isotropic proton chemical shift. Using Eq.
[3], this is equivalent to making the substitution

Dvoff ~i ! 5 DvCSA~i !

5 @gH B0~s\ 2 s' !/3#~1 2 3 cos2uci! , @9#

where (s\ 2 s') is the difference, taken to be 6.9 ppm for LPE
(35), between the parallel and perpendicular components of the
chemical shift tensor, assumed axial. Moreover, the unique
axis of this tensor, presumed to lie along the C–H bond, makes
the angleuci with B0; hence, for the two bonded protons in
LPE,uci is the same asui in Eq. [1], which definesvDi. In order
to develop a properT 2

C
n(ORPI)21 expression appropriate for

MAS, using assumptions parallel to those used to develop Eq.
[7], the angular terms in each product,Dvoff(i )vDi, must be
expressed in terms of theirvr dependence. If we restrict our
attention to the dominant contributions from the two bonded
methylene protons, then we must analyze thevr dependence of
(1 2 3 cos2ui)

2. Squaring the expression in Eq. [6] and using
trigonometric identities reveal that for the general isochromat,
one has sine and cosine terms oscillating atnvr for n 5 0, 1,
2, 3, and 4. Correspondingly, spectral densities,J(nvr) at each
of these frequencies will be involved in the expression for
T 2

C
n(ORPI)21. Rather than write down these rather tedious

expressions, we choose to deal quantitatively only for the case
of OR-LPE, where (12 3 cos2ui) for the bonded methylene
protons can be replaced by cos[2(vr t 1 ci)] for all 13C nuclei
in the sample andci is a phase factor. The square of the latter
term is simply {0.5 1 0.5 cos[4(vr t 1 ci)]}; hence, the
corresponding relaxation expression will involve onlyJ(0) and
J(4vr). That expression, adding the effects of both13C-bonded
protons, is

T 2
C

n(ORPI)21 5 @~m0/4p !~gCgH\ /r i
3!

3 ~s\ 2 s' !~gH B0/v1
H !] 2

3 @I ~I 1 1!/216#@2J~0! 1 J~4vr !# . [10]

The fact thatDvoff(i)vDi includes a “constant” term, giving rise
to the J(0) term in Eq. [10], means thatnr will have no
influence on this term untilnr becomes fast enough to effect a
slowing of the spin fluctuation rate. Also, thisJ(0) term will, in
principle, be sensitive to any long tails which the spin corre-
lation function may possess. At least for the OR-LPE sample it
is now apparent why the on-resonance linewidth had very little
sensitivity tonr. J(0) is always larger thanJ(4vr); moreover,
since the OR-LPE data of Fig. 6 reflectsJ(2nr) versusnr, we
can see thatJ(0) $ J(1 kHz) ' 4J(8 kHz). Hence,J(0) $
4J(4vr) already atnr 5 2 kHz. Therefore, thenr-independent
J(0) term dominates for most of the range ofnr that is exam-
ined. If we extrapolate this behavior to the LPE data shown in
Fig. 11, it is reasonable to attribute the drop in LWn(obs)
betweennr 5 1 and 2 kHz to a MAS averaging of some of the
J(nvr) terms.

Equation [10] also becomes a means for testing whether the
experimentalmagnitudeof LWn(ORPI) can be reproduced,
assumingts 5 33 ms for the Lorentzian spectral density andts

5 28 ms for the exponential spectral density. Recall that these
ts’s gave the best fit to thenr dependence of the parabolic
coefficients, even though the magnitudes of LWf(ORPI) cal-
culated were 10–20% below those observed. Substitution of
thesets’s into Eq. [10] predicts a LWn(ORPI) for the Lorent-
zian spectral density which is only 35% of that observed; for
the exponential spectral density, the predictions are 47% of
observed. This agreement is significantly worse than that for
LWf(ORPI). Therefore, we also adapted the previously de-
scribed Monte Carlo calculations so that we could predict
on-resonance linewidths. We first duplicated the results of Eq.
[10] for independently fluctuating proton spins with a single
lifetime of twice the correlation time in Eq. [10]. Then, we
calculatedT 2

C
n(ORPI)21 for the two-lifetime model previously

described. The lifetime parameters,tsh 5 80 ms andtlg 5 160
ms, which fit reasonably well the shape of thenr versusb data
(Fig. 12), yielded LWn(ORPI) values about 10% below exper-
imental. This is good agreement in view of a 10–15% increase
expected if contributions from more distant protons are in-
cluded in the calculation. (It turns out that in the two-lifetime
model for OR-LPE, it is the states withIz 5 61 that contribute
most heavily to dephasing for the on-resonance case; hence, for
OR-LPE, one has the situation that the lifetime for theIz 5 0
state is dominant in determining the off-resonance behavior
and the lifetimes in theIz 5 61 states are dominant in deter-
mining the on-resonance behavior.)

While we may take satisfaction that the two-lifetime model
gave better agreement with both the LWf(ORPI) and the
LWn(ORPI) data for OR-LPE, the principal reason for the
failure of the single-lifetime spectral densities is that they are
not sufficiently “peaked” atJ(0). A tlg of 160 ms served to
produce the proper “peaking.” Recall, however, that the two-
lifetime model utilizes Lorentzian spin correlation functions
which do not conceptually include the long tails associated
with the idea of conservation of total polarization. Proper
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inclusion of this effect might also, in principle, supply the
needed amplitude atJ(0) for giving agreement with
LWn(ORPI). Another reason to be skeptical about the two-
lifetime model is the following. It is not compellingly obvious
that for theith proton, spin flips with its single intramethylene
proton partner at a distance of 0.178 nm should dominate the
summedinfluence of the other 15 protons that lie within 0.31
nm, given that rij

23 for the intramethylene pair in LPE is less
than 20% of(j rij

23 for that ith proton. We now turn to some
cross-polarization (CP) data which offer qualitative commen-
tary on the validity of the two-lifetime model.

A rough estimate oftlg may be obtained from the 2.35 T, CP
data for LPE and OR-LPE in Fig. 13. The inset provides an
expansion of the data at earlier times. The horizontal lines are
drawn there at amplitudes of 0.67 and 0.80. These lines cor-
respond to13C polarization levels expected when full equili-
bration is reached for three spins (one13C and two bonded
protons) and five spins (one13C plus two bonded and two
non-bonded protons), respectively. We expect the required
increment of time for covering the interval from 0.67 to 0.80 to
be slightly longer thantlg/2. The foregoing expectation is
based on13C polarization exchange only with its bonded
protons during cross-polarization. (A consideration of direct
polarization exchange between13C nuclei and more distant
protons would cause us tounderestimatetlg when applying the
foregoing claim.) In Fig. 13, there is a break in the LPE curves
near 0.67 indicating that the fastest process is intramethylene
spin equilibration (36); this process is complete in only about
30 ms. Then a longer process takes over whose detailed shape
is dependent onnr but whose overall rate of change at longer
times is similar for the three data sets shown. The 0.80 polar-

ization level is reached attcp ' 110 ms in all of the samples,
ignoring the oscillation of the OR-LPE data; in other words,
the five-spin equilibrium level is reached about 80ms after the
three-spin level is reached. Very crudely then, this 80ms
difference would be identified with a time slightly longer than
tlg/2, implying atlg of '140ms, i.e., comparable to thetlg of
160ms in the model calculation. This is further support for the
notion that spin exchange between a proton inside and a proton
outside of the13CH2 group is significantly slower than that
between protons within this group.

We now summarize this exercise of trying to extract infor-
mation about the spectral density function associated with spin
fluctuations. Our main objective is to specify some critical
timescales for decoupling strategies, such as TPPM, that at-
tempt to reduce LW(ORPI) contributions. These strategies
introduce secondary fields whose purpose is to promote “sec-
ond averaging” of̂ Izi&. An important issue is to define the
shortesttime scale for the fluctuations; this is the time scale
over which one would want significant “second averaging.”
From the fits to the data shown in Fig. 12, we would suggest
that ats of 25ms, corresponding to a 50ms spin lifetime, would
be a conservative estimate of the shortestts over any orbit.
Also, the spectral density function definitely exhibits a
“peaked” behavior atJ(0). The practical importance of this
peaking is that the threshold for good second averaging in
TPPM will be more diffuse than it would be for, say, a
Lorentzian spectral density function. In other words, applica-
tion of what might seem to be inadequate rates of second
averaging may still produce some improvement in resolution.

Brief Comments Regarding MAS-Assisted Dipolar
Fluctuations (MADF)

While the focus of this paper is the influence of ORPI on
linewidths, the strong broadening from the mechanism we refer
to as MADF merits a brief, albeit more qualitative discussion.
We can point to at least two features associated with MADF
broadening which seem to necessitate a mechanism distinct
from that used to explain the ORPI line broadening. First, from
Fig. 7, the onset of this broadening is quite abrupt and becomes
quickly dominating. Particularly at lowerB0 where the influ-
ence on LWn(ORPI) from proton CSA is negligible, this rapid
onset remains. Second, in the theory used to understand ORPI
line broadening, there is no reason why, for a givenn1

H,
linewidths shouldincreaseasnr increases, as is seen in Fig. 11.

In an earlier paper (4), before the dependence of MADF
broadening onnr was appreciated, this mechanism was called
“insufficient decoupling power” and was explained in terms of
cross-polarization with an RF mismatch ofn1

H in the limit
where n1

C 3 0. Again, a simple picture of the influence of
MADF starts out with the notion that sizable perturbations
betweenI andSspins in rigid lattice systems can be understood
by projecting all relevant spin motions along the static field
direction (thez-axis). For explaining LW(ORPI) one draws

FIG. 13. Normalized cross-polarization amplitudes at 2.35 T for the
polyethylene samples given in the legend as a function of cross-polarization
time under optimized matching conditions wheren1

H 5 65 kHz5 n1
C 2 nr. The

inset expands the early-time behavior. A qualitative argument given in the text
relates the time ('80 ms) required for going from an amplitude of 0.67 to 0.80
to one-half the characteristic time for polarization exchange between a13CH2

proton and a more distant proton.
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attention to the smallz-projections,^Izi&, of the proton spin
components,Iz9i, which areparallel to neff

H ; in contrast, in order
to explain MADF broadening, one considers the usually larger
z-projections,^Izi&m, of the Ix9i components, which are trans-
verse toneff

H . The subscript “m” refers to “modulation” because
the Ix9i components are modulated, i.e., precess, at the nominal
frequency ofn1

H in the presence of the proton RF field.
In the absence of MAS,the idea used (4) to explain the

broadening from insufficient decoupling power is that dipolar
fluctuations, arising from mutual spin-flips between proton
pairs, frequency-modulate (37) the precession ofIx9i (and of
^Izi&m); thus, the resulting time dependence of^Izi&m is ex-
pressed in terms of an associated correlation function having a
distribution of spectral densities centered aroundn1

H. In the
presence of sufficiently fast spin-flip modulations, this spectral
density can take on some zero-frequency character. Such zero-
frequency spectral density causes aT 2

C-type dephasing in a
non-spinning sample via the heteronuclear Hamiltonian (Eqs.
[1] and [4]). If n1

H is large enough, this spin-flip-induced
modulation of the spin precession will not yield any significant
spectral density at zero frequency since the highest frequencies
of spin-flip modulation lie belown1

H. As n1
H decreases below a

threshold value ofn1
H, which is about 40 kHz for LPE, this

spectral densityat zero frequencywill become non-negligible
and rapidly increase.

If MAS is now added to the foregoing picture, then, in Eq.
[4], vDi becomes fully amplitude-modulated (37) by conver-
sion into the sum of terms having periodicities ofvr and 2vr

(see Eq. [6]). Thus, the spectral density,Jlf (v), associated with
the time dependence of the local proton fields,vDi^Izi&m, in-
cludes the coherent time dependence ofvDi and the coherent-
plus-incoherent time dependence of^Izi&m. It is easy to see how
the range of the spectral density associated with^Izi&m alone is
narrower in frequency thanJlf (v) since the latter includes the
time dependence ofvDi. Thus, within the range ofnr where the
rate of proton spin-flips is unaffected by faster spinning, it is
easy to rationalize that faster spinning increases the total width
of Jlf (v) for LPE, thereby increasing bothJlf (0) and the thresh-
old value ofn1

H at which LW(MADF) becomes significant.
Two published papers, both dealing with adamantane, are

relevant to this discussion of MADF broadening. Stejskalet al.
(37) discuss the influence of dipolar fluctuations in combina-
tion with MAS on the heteronuclear dipolar Hamiltonian. The
context is a description of cross-polarization. The amplitude
modulation, via MAS, ofvDi and the frequency modulations,
via dipolar fluctuations, ofIx9i, are shown to result in a multiply
peaked plot of cross-polarization rate against RF amplitude
when the other RF amplitude is held fixed. In such a plot, it is
shown and rationalized that one should see maxima, separated
by nr, on both sides of the conditionn1

H 5 n1
C and that the first

two maxima dominate even though higher order maxima also
exist. The second relevant paper (29) describes a deterioration
of resolution in adamantane whenever the conditionn1

H 5 nnr

is met. This result was described in terms of “rotational reso-

nance recoupling” of the13C–1H dipolar interaction. This
picture describes MADF broadening for the special case where
the width of the frequency modulation associated with spin
flips is smaller thannr. For thenr range that we have explored,
LPE is in the contrasting regime where spinning seems to have
little influence on the width of these fluctuations.

On the Generalizability of These Results to Other
Protonated Carbons

We performed a few linewidth measurements at 9.4 T on
methyl-a-D-glucopyranoside tetraacetate (MGT). The mole-
cule making up this crystalline material possesses a variety of
carbons with the full range of bonded protons. Figure 14 shows
the molecular skeleton of MGT along with observed linewidths
for selected methyl, methylene, and methine carbons as a
function of (n1

H)22; the upper and lower data correspond tonr

FIG. 14. On-resonance linewidths at 9.4 T fornr 5 5 kHz (upper) andnr

5 8 kHz (lower) plotted against the inverse square of the RF field for selected
carbons of MGT whose structure is shown. Corresponding data for LPE are
added for comparison. The various kinds of carbons are indicated in the
legends. Note the insensitivity of the methyl linewidths and the significant
variation in sensitivity for the methine carbons.
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values of 5 and 8 kHz, respectively. Also shown, for compar-
ison, are the corresponding LPE data. Not shown are our
LW(obs) versusDnRF data which indicated that the mean
proton resonance for all of the methine and methylene protons
is within 6300 Hz of the frequency used to obtain the data of
Fig. 14; Table 3 gives the corresponding parabolic constants,b,
obtained from the latter data. The data of Figure 14 may thus
be considered to represent “on-resonance” linewidths, given
that the maximum linewidth contribution from off-resonance
effects in Fig. 14 would be 0.2 Hz for the methine carbon and
0.5 Hz for the methylene carbon. The data are somewhat noisy,
reflecting the limited time available on the 9.4 T instrument. It
was not our goal to broaden the scope of this study; yet we
wanted a little perspective on how generalizable the polyeth-
ylene results were; the experiments at 9.4 T would show this
most clearly.

A very notable characteristic of the MGT lineshapes, which
became more evident at lowern1

H’s and largerDnoff’s, was the
development of lineshapes which looked like a narrower res-
onance sitting atop a broader base, as though there might be
some “inhomogeneous” broadening present. These lineshapes
stand in contrast to the LPE lineshapes which, while sometimes
asymmetric, always had more smoothly changing contours.
Figure 15 shows the non-acetyl portion of two “on-resonance”
spectra of MGT atnr 5 5 kHz andn1

H values of 68.7 (top) and
41.3 (bottom) kHz. Assignments are indicated in the caption.
The lower spectrum illustrates more clearly the narrower and
broader features of certain lineshapes, notably those at 97 and
62 ppm. The linewidths shown in Fig. 14 are based on FWHH
measurements. In the presence of such lineshapes, the FWHH
measurement demands that a peak amplitude be selected. We
did this somewhat subjectively, considering the signal-to-noise
ratio, with the result that, for these more cusp-like lineshapes,
we invariably chose a peak height about 1 rms noise level
below the observed peak height. Needless to say, these lines
are generally not Lorentzian. We did not doT 2

C measurements,
which would have helped to sort out the inhomogeneous char-
acter of the line.

With the foregoing considerations in mind, from Fig. 14 and
Table 3 we conclude the following: (a) The single methylene

carbon at 62 ppm shows a significantly steeper slope ('1.83)
at 5 kHz than LPE. (b) The methyl carbon at 21 ppm shows
very little sensitivity ton1

H; hence, LWn(ORPI)’s are small for
these methyl carbons. (c) The methine carbons show a depen-
dence onn1

H which is intermediate between the dependences of
the methylene and methyl carbons; yet, the contrast in behav-
iors of the two methine carbons is quite large, i.e., the 97-ppm
methine carbon (attached to the methoxy group) has much
larger (33 to 34) contributions from LWn(ORPI) than does
the unassigned, 72-ppm methine carbon. That these differences
in methine behaviors can be traced to proton CSA effects is
further supported by intensity-related observations, mentioned
in the caption of Fig. 15, pertaining to 4.7 T MGT spectra. (d)
Both the methylene and the methine carbons show departures
from a linear dependence on (n1

H)22 asn1
H decreases. Consid-

ering the previously mentioned reason for this departure
(MAS-assisted dipolar fluctuations nearn1

H) and considering
how the threshold for observing this mechanism depends onnr

FIG. 15. On-resonance spectra at 9.4 T for the non-acetyl resonances of
MGT at nr 5 5 kHz andn1

H 5 69 kHz (upper) and 41 kHz (lower). All
resonances are methine resonances except at 62 ppm (methylene) and 56
ppm (methyl of the methoxy group). Note the substantial variation in
linewidths for the methine carbons and the heterogeneous appearance (a
narrower line astride a broader base) of the 98 and 62 ppm resonances at
n1

H 5 41 kHz. The variation in peak heights over the different methine
groups as well as the methylene group is strongly accentuated at higher
static fields as expected when proton CSA interactions dominate the ORPI
contributions to linewidth. For example, for an MGT spectrum (not shown)
taken at 4.7 T with a choice of parameters comparable to the upper
spectrum, peak height ratios for the 97 (CH) and 62 (CH2) ppm peaks,
relative to the 72 (CH) ppm peak height, are, respectively, 0.89 and 0.73;
in the upper spectrum at 9.4 T these same ratios are 0.61 and 0.40.

TABLE 3
Parabolic Coefficients for One Methylene and Two Methine

Carbons in MGT at 9.4 T, n1
H 5 73 kHz, and the Two Indicated

Values of nr

Resonance
(ppm) Carbon type

b (31026 s)
at 2 kHz

b (31026 s)
at 5 kHz

62 CH2 17.96 0.5 8.86 0.5
72 CH 4.26 0.2 1.26 0.1
97 CH 3.26 0.2 1.06 0.1

Note.Errors represent one standard deviation in the parabolic fitting proce-
dure.
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(Fig. 10), it is no surprise that this point of departure in Fig. 15
is similarly dependent onnr. In addition, this point occurs at a
lower value ofn1

H for a methine carbon than for the methylene
carbon. The latter observation implies that the spectral density
of fluctuations extends to higher frequencies for a methylene
than for a methine carbon as would be expected for methylene
carbons whose protons can undergo spin flips with each other.
(e) The relative similarity of theb values in Table 3 for the two
methine carbons suggests that the rates of spin fluctuations at
these two sites are only modestly different. Therefore, the
explanation for the different slopes these carbons exhibit in
Fig. 14 must mostly reflect a contrast in the proton CSAs;
either the magnitudes are different by about a factor of two or
the tensor orientations, relative to the corresponding13C–H
internuclear vectors are different. The relative orientation of
the two tensors determines the magnitude of theJ(0) coeffi-
cient in theT 2

C
n(ORPI)21 expression. (If one knew more about

the details of the proton CSAs in various bonding situations,
one could conceivably use a plot like Fig. 14 as a carbon
assignment tool.) (f) Theb values for the methylene carbon in
MGT are about 30% higher atnr 5 2 kHz and about 65%
higher at 5 kHz than those for the carbon in LPE. Application
of Eq. [7], using the isotropically averaged coefficients for
Lorentzian spectral densities, gives ats of 34 ms, based solely
on the ratio of theb’s at the differentnr. At the same time, this
ts predicts magnitudes for theb’s which are'75% of those
observed. It is not an intuitive result thatts should be 34ms in
MGT and 47ms in LPE, considering the higher proton density
in LPE unless the greater isolation of the13CH2 group fosters
more rapid spin flips between these protons. We reserve judg-
ment on this issue and await more careful experiments with
better signal-to-noise.

In summary, the MGT data, in spite of the marginal signal-
to-noise, have indicated that methyl carbons are not strongly
influenced by LWn(ORPI), methine carbons have quite vari-
able, but intermediate contributions from LWn(ORPI), and
methylene carbons can have even greater contributions to
LWn(ORPI) than the carbons in LPE. In addition, the narrow/
broad aspects of some of these lineshapes deserve further
scrutiny. Is this the result of fewer distant non-13C-bonded
protons? In LPE, of the 15 neighboring protons that lie be-
tween 0.247 and 0.310 nm from each methylene proton, 8 of
these are intramolecular pairs; for the methylene protons of
MGT, the maximum number of such intramolecular pairs is 2
and, it may be less, depending on the stereochemical disposi-
tion of the methylene group. Thus, these methylene protons in
MGT are clearly more isolated, in a polarization-exchange
sense, from neighboring protons, relative to the protons of
LPE. Another qualitative argument for widely disperse line-
widths is the recognition that when13C–H internuclear vectors
are parallel to the spinner axis, (bi 5 0), thenvDi 5 0 at every
point in the orbit; hence, there is no contribution to LW(ORPI)
from that proton. LWn(ORPI) contributions would then arise
from other protons with non-zerobi’s. For a methylene carbon

such contributions would mainly originate from the other at-
tached proton. For methine carbons, LW(ORPI) would be
relatively small, arising from more distant, weakly coupled
protons. If this were the principal argument, we would expect
the dispersion in methine linewidths to be more evident than
that for the methylene resonance. Contrary to such an expected
trend, narrow-linewidth components, in Fig. 15, are seen for
both methylene and methine carbons.

There should also be a probing into the question of whether
broadening in MGT is entirely aT 2

C broadening, as in LPE, or
whether some proton spin states are so long lived that the
effects on the carbon resonance must be partially described in
static-spin-state terms (2). Evidence already exists for non-
spinning organic single crystals that certain, more isolated
protons, have very long spin-state lifetimes at certain orienta-
tions (9). Admittedly the latter observation was made for a
methine proton at an orientation where the13C–H dipolar
interaction was near maximum andn1

H was relatively weak.
Thus, the presence of the13C dipolar interaction contributed
significantly to the “isolation” of the attached proton from the
rest of the protons; this attached proton would be much less
isolated at highern1

H. Also, structure-related isolation of pro-
tons from spin–exchange interactions would be an important
issue to elucidate, not only for considerations of resolution but
also for understanding cross-polarization dynamics and the
quantitative character of cross-polarized signals. In the context
of improving resolution, however, by implementation of strat-
egies like TPPM (1), the issue of spin–exchange isolation
becomes somewhat less important in that a properly conceived
and implemented TPPM decoupling should be effective in
reducing LW(ORPI) contributions, regardless of whether the
origin is aT2

C contribution or a static linebroadening (1, 2). In
fact, spin isolation will usually relax the criteria for second
averaging in a scheme like TPPM since MAS averaging, acting
in parallel with TPPM averaging, would also be very efficient.
This leads us to comment further on new decoupling schemes,
like TPPM.

Relation of This Work to the Choice of Parameters
for CW Decoupling and Some Perspectives
on New Decoupling Schemes

New decoupling methods, like TPPM, incorporate the idea
of generating, via some modulation strategy, a second, weaker
RF field,n2

H, orthogonal to both the static field and the main RF
field. This second field is designed to average away these
residual proton spin projections along the static field direction
(Eq. [1]). In this way the LW(ORPI) contributions will be
reduced, provided that the precession period, (n2

H)21, corre-
sponding to this second field is significantly shorter than the
minimum effective proton spin-state lifetimes. If we take 50ms
to be an approximate minimum spin lifetime in LPE, as dis-
cussed, then the conditionv2

Hteff 5 1 is obtained whenn2
H 5

3.2 kHz. This field strength is a threshold value for influencing
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resolution. One would anticipate thatn2
H ought to be at least

5–10 kHz in order to be reasonably effective in reducing the
resident spin fluctuations. In other words, we expect the min-
imum effectiven2

H to be slightly higher than thatnr ('5 kHz)
which gives a significant attenuation for theb values (Fig. 6).
We say “slightly higher” sincen2

H produces modulations ofIzi

only atn2
H, whereasnr produces modulations at bothnr and 2nr.

However, one cannot arbitrarily choosenr and n2
H since both

are coherent frequencies imposed on the system. As has been
discussed before (1), one of the constraints on the modulation
schemes is that one wishes to avoid interference betweennr

andn2
H; usually this means avoiding the conditions wheremnr

5 n2
H or nr 5 nn2

H with m, n integers. The condition,n2
H . nr,

seems slightly more desirable thann2
H , nr, for averaging

ORPI contributions since the modulation ofIzi via n2
H acts on a

wider range of LW(ORPI) contributions than doesnr.
A central point is thatit is mainly the LW(ORPI) contribu-

tion, including both LWf (ORPI) and LWn(ORPI), which is
susceptible to improvement via TPPM.Other, mostly inhomo-
geneous, contributions to linewidth, e.g., anisotropic bulk mag-
netic susceptibility (4), can be much larger than LWn(ORPI);
TPPM will do nothing for such contributions. LWn(ORPI)
contributions can be estimated, from plots like Figs. 8 and 14,
as the difference between the actual linewidths and the inter-
cept values at infinite power. (Note that in the regime where
molecular motions have characteristic frequencies less thann1

H,
these motions can also give (4) a dependence of linewidth on
(n1

H)22. Such contributions to linewidth will increase the slopes
of plots like those in Figs. 8 and 14. Considering the nature of
this motional relaxation mechanism, TPPM is not expected to
be particularly effective in removing this broadening. There-
fore, when significant relaxation due to slow motion is present,
plots like Figs. 8 and 14, taken at a singleB0, will only give
upper limits for LW(ORPI).

An important perspective in estimating the benefits of
TPPM is that the LPE and MGT cases represent systems in
which two important situations prevail: First, broadening
from molecular motion is negligible and broadening from
anisotropic bulk magnetic susceptibility is about as small as
it is for any organic system; therefore,the relative contri-
bution from LWn(ORPI), as a fraction of the total linewidth,
is larger than in similarly composed materials which dis-
play motional or susceptibility broadening.Second, LPE
and MGT areNOT representative of those materials which
have other major sources of local fields which, in turn, can
give rise to greater LWn(ORPI) effects.In particular, very
localized dipolar fields from, say, nitrogen, phosphorus,
chlorine, or fluorine nuclei can create varied and possibly
large LWn(ORPI) contributions when13C nuclei are coupled
to protons in close proximity to these other types of nuclei.
Therefore, especially at lowerB0, measurement of
LWn(ORPI) might be used to assign13C resonances in the
vicinity of third magnetic nuclei. Correlations of linewidths
and T 2

C’s with distance to19F nuclei in lightly fluorinated

solids have already been observed (38), and there is a
reasonable chance that LWn(ORPI) will also show depen-
dence on the relative orientations of the13C–H and the
19F–H dipolar tensors.

These dipolar local fields fall into a category for broadening
similar to the CSA of the protons (except for theB0 depen-
dence of the CSA), since these fields are second-rank tensors.
Expressions like Eq. [10] involvingJ(0) are expected. Thus, in
the paper in which TPPM was introduced (1), the presence of
15N in the materials described significantly enhanced the rela-
tive contributions of LW(ORPI). Therefore, TPPM yielded a
greater improvement in linewidth than would have been seen in
the absence of the15N nuclei. Also,the MGT and LPE results
are not representative of samples like soil samples, where there
can be macroscopic inclusions of high magnetic susceptibility.
It has already been shown (10, 11) that slow modulation
schemes for decoupling can improve resolution (mainly dem-
onstrated effective for carbons with weak proton couplings) in
such soil samples. Again, robust TPPM sequences should
greatly improve these linewidths, with the degree of improve-
ment depending somewhat on whether the inclusions have
isotropic or anisotropic bulk susceptibility.

In our treatment of LWn(ORPI) in Eq. [10], we considered
the proton CSA to take on its experimentally determined value.
From Table 1, however, it is clear that we should be dealing
with an effective CSA which includes susceptibility effects.
This brings up a point which will usually be a minor effect, but
could become significant at higherB0, namely that there is a
mechanism here where particle shape and the intra- and inter-
particle susceptibility fields may increase the size of the “ef-
fective CSA,” hence the amount of broadening. MAS averages
to zero the local field perturbations, arising from isotropic bulk
magnetic susceptibility, at the13C nuclei; however, ashorten-
ing of T 2

C could also very well be traced to the corresponding
susceptibility fields sensed by the protons. Therefore, at high
fields one may see some improvement in resolution when
going from a polycrystalline sample to a monolithic, void-free
solid sample with ellipsoidal shape (although the presence of
the rotor endcaps and their susceptibility effects must also be
considered). For LPE in these studies, we used solid plugs,
snugly set against endcaps.

Our data indicate that, in comparison to the ORPI mecha-
nism, the potential of MAS-assisted dipolar fluctuations
(MADF) for dominating linewidths is much greater. While
TPPM strategies can reduce contributions from LWn(ORPI), it
is doubtful whether similar benefits are available from TPPM
for linewidth contributions from MADF. This point should be
verified experimentally. Our skepticism about the efficacy of
TPPM for reducing line broadening associated with MADF in
a material such as LPE is that the most important ingredient for
generating undesirable “zero-frequency spectral density,”
Jlf (0), associated with the proton local field, is spin-flip mod-
ulations. Since the width of these modulations in the presence
of CW decoupling extends to about 40 kHz, we do not see how
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the slower rates of second-averaging in the TPPM sequence
will significantly slow these fluctuations. In fact, TPPM may
cause additional MADF broadening, relative to CW decou-
pling at the samen1

H, by imposing additional coherent time
dependences on̂Izi&m. There is, therefore, an associated pos-
sibility that Jlf (v), whose spectral density distribution is cen-
tered atv1

H, might become broader in the presence of TPPM
with the result thatJlf (0) and the13C linewidth could increase.
A primary practical concern, therefore, is to have a sufficiently
large n1

H available so that this broadening mechanism is not
important.

In order to emphasize the influence of MADF, we replot in
Fig. 16 some of the LPE linewidth data from Fig. 10b against
(n1

H)22 for various values ofnr. From Fig. 16, it is apparent that
the region of linear dependence on (n1

H)22 shrinks quite rapidly
asnr increases. Fornr 5 8 kHz, there is no well-defined linear
region. In other words, the contributions from MADF are
becoming perceptible atnr 5 8 kHz even whenn1

H lies in the
range 80–90 kHz.

In terms of our qualitative understanding of MADF broad-
ening, the data of Fig. 10a make more sense than the data of
Fig. 10b. In the data of Fig. 10a, we see thatnr augments the
dipolar fluctuations by about 2nr at 2.35 T, consistent with
other observations (29) and the notion that modulation, by
MAS, of vDi at n1

H and 2n1
H is a dominant contribution to the

broadening ofJlf (v). On the other hand, augmentation by about
3nr abovenr 5 4 kHz at 9.4 T (Fig. 10b) is not so easily
understood unless, for example, further modulations associated
with the proton CSA are possible. (There is a chance that this
9.4 T data is reflecting the greater RF instability of this spec-
trometer relative to the spectrometer at 2.35 T; on the other

hand, the OR-LPE data at 9.4 T showed the very same trend.)
Nevertheless, smaller effects at 3nr and even 4nr are certainly
present (29); so evidence for measurable MADF contributions
at higher n1

H in plots like Fig. 16 for nr 5 8 kHz is not
surprising.

Finally, we offer some general remarks on parameter selec-
tion for the optimization of resolution, keeping in mind the
perceived trend toward operation at higher static fields and
larger nr. For CW decoupling, it is very clear that for rigid
methylene and methine carbons, in the absence of third mag-
netic nuclei or problems with large internal susceptibility
fields, the preservation of resolution demands thatn1

H increase
significantly asB0 increases. For LPE or MGT, 55 kHz is more
than adequate at 1.4 T, 60 kHz is reasonable at 2.35 T fornr up
to 4 kHz, and 70 kHz seems adequate at 4.7 T (at least up to
nr 5 5 kHz, but not necessarily up to 8 kHz). However, it
seems apparent that one ought to have at least 90–120 kHz
available at 9.4 T, depending on thenr chosen. These values of
n1

H are based to some extent on the fact that LWn(ORPI)
(expressed in Hz) has aB0

2 dependence (Eq. [10]) at constant
n1

H. Of greater concern, however, is the importance of the
broadening from MADF. As previously mentioned, according
to Fig. 10b, then1

H at which one sees a strong onset of
broadening at 9.4 T increases at about three times the rate of
increase ofnr. Also from Figs. 10b and 16, it would seem
desirable to have an1

H of 80–90 kHz atnr 5 8 kHz. If one were
further tempted to avoid sideband/centerband overlap in a
general CPMAS spectrum at 9.4 T by usingnr ' 16 kHz, then
if the trends of Fig. 10b continue, one would want a corre-
spondingn1

H of about 105–115 kHz. Whether the trend noted in
Fig. 10b continues depends in part on whether the basic rate of
spin fluctuations, which MAS modulates, is independent ofnr.
As nr increases, there will come a point where the rate of these
fluctuations will decrease. Thenr at which this happens may be
a sensitive function of the local proton distribution. We will not
speculate on how fast one must spin to achieve this. The
relative flatness of the LPE LW(obs) versusnr curve at 9.4 T
in Fig. 11b forn1

H 5 83.6 kHz suggests that the rate of spin
flips is quite constant (i.e.,J(0) is quite constant) in LPE up to
nr 5 8 kHz. We do not claim any similar observation in MGT.

In the limit of very fast MAS, long spin lifetimes are
expected. The “on-resonance” ORPI contributions to linewidth
will then be heterogeneous (2) and will be larger than they
would have been had spin fluctuations been present. Therefore,
if no TPPM-like strategies are applied, and ifn1

H is large
enough that MADF give negligible contributions to the line-
width, then MAS-induced quenching of spin fluctuations will
degrade resolution.

The blessing/curse aspect of fast MAS is important for the
experimentalist to recognize. There are the negative issues,
namely, the non-trivial complications for reliable cross-polar-
ization (39) along with the points just discussed, i.e., the need
for highern1

H’s and the potential that LWn(ORPI) effects will
increase. On the other hand, fast MAS offers the advantages of

FIG. 16. Plots, like those if Fig. 8, for LPE at 9.4 T at the variousnr given
in the legend. Note that atnr 5 8 kHz one can no longer identify a final slope.
This suggests that fornr 5 8 kHz, MADF contributions are no longer
negligible, even atn1

H 5 80 kHz.
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fewer spinning sidebands (simpler spectra and better signal-to-
noise in the centerbands), and a reduced sensitivity toDnRF

(see Fig. 6). The latter benefit is significant, given that one
typically chooses a mean decoupler frequency in the presence
of a dispersion of proton chemical shifts. At the same time, Fig.
6 also suggests that changes in the parabolic coefficient are
small beyondnr ' 6 kHz even though Eqs. [7], [8a], and [8b]
do not predict a flatness at highernr. Fast MAS also has
significant advantages in reducing homonuclear coupling ef-
fects in the CPMAS spectra of fully-13C-labeled materials (40).

We now make some comments aboutlineshape.The OR-
LPE data have allowed us to retain some simplicity in our
analysis in terms of spin fluctuations. These data, together with
the data from the unoriented sample, have also experimentally
verified a dependence of LW(ORPI) on crystalline orientation
within the rotor. Therefore,the notion that CPMAS lineshapes
in a polycrystalline sample ought to be Lorentzian, for the
purposes of lineshape fitting, should be regarded as theoreti-
cally unjustified.Experimentally, we encountered only a few
regions of parameter space where lineshapes were closely
Lorentzian for either sample. For the most part, lineshapes had
a little asymmetry and had wings which were either too intense
or too weak compared with the wings of corresponding best-fit
Lorentzian lines. Distributions ofT 2

C(ORPI) values, to the
degree that they dominate the lineshape, should give rise to
symmetric, not asymmetric, lineshapes with wings somewhat
more intense than those of the best-fit Lorentzians. However,
second-order dipolar shifts, distributions of Bloch–Siegert
shifts, the detailed shape of theB0 field across the sample, and
chemical shift dispersions intrinsic to the sample may all
contribute to lineshape asymmetry. With strong decoupling
close to resonance, the lineshapes at 2.35 T had wings which
fell off in intensity faster than those of the optimized Lorent-
zian fits. At higher fields, the experimental wing intensity
varied both above and below that for the optimized Lorentzian
fits; moreover, the asymmetry became more evident.

We digress to one other observation on the subject of non-
Lorentzian lines. It seems reasonable that full plots, like one
shown in Fig. 3, should identify the isotropic-average proton
resonance frequency with the center frequency of the parabola;
we adopted this definition. Recall, however, that when we
changed samples from the unoriented to the oriented LPE
samples, we saw a shift in this central frequency, as though the
field inside the sample hadboth remained the same for the13C
nuclei and had increased by about 0.6 ppm for the protons.
Such an interpretation is absurd. The qualitative explanation
for this relative shift is that the parabolic minimum occurs
when the orbit-averagedT 2

C values arecollectivelymaximized
over all orbits represented. Orbit-averagedT 2

C(ORPI) values
are, to the degree that we can ignore the orientation depen-
dences of the spectral density, a time-weighted average of
(vDiDvoff(i))

2, i.e., of thesquaresof the instantaneous devia-
tions from13C resonance (Eq. [3]) experienced over the orbit.
On-resonance, we presume thatDvoff(i) is dominated by the

proton CSA (Eq. [9]); thus,Dvoff(i) 5 DvCSA(i) 1 di, where
di is the difference between the true resonance frequency for
the ith proton and its apparent resonance frequency, 2pn*RF,
defined by the parabolic minimum of the13C resonance (Fig.
3). Within the approximation that for LPE, the13C–H dipolar
tensor and the proton CSA tensor are collinear and axially
symmetric, the existence of and the sign of the difference in
n*RF values for OR-LPE and LPE can be understood quite
simply. Critical to the argument is the recognition that, for the
two 13CH2 protonsover any MAS orbit,the (1 2 3 cos2ui)
angular dependence ofDvCSA(i) andvDi is not only the same
but almost alwaysasymmetricwith respect to positive and
negative deviations from the mean. Moreover, when asymmet-
ric, the maximum deviation of (12 3 cos2ui) is always larger
in the negative direction. Only forbi 5 p/2 (the OR-LPE case)
and forbi 5 0 (a condition that cannot simultaneously be true
for both methylene protons) are the positive and negative
excursions from the mean symmetric (forbi 5 0, there are no
excursions). It is easy to prove that when excursions are
symmetric, i.e.,bi 5 p/2, the orbit average of (vDiDvoff(i))

2 (a
quantity proportional to the instantaneous LW(ORPI) at a
particular orientation) is minimized whendi 5 0; so, for
OR-LPE, n*RF represents true resonance. For all other orbits,
which have asymmetric excursions, it can be easily demon-
strated thatdi becomes non-zero and orbit-dependent; how-
ever, the sign ofdi is always the samesuch thatn*RF moves
away from the true mean resonance and in the direction of that
proton resonance associated with the unique axis of the proton
CSA tensor. Thus, for LPE wheren*RF lies upfield from its
OR-LPE counterpart, we infer that within the approximation of
the collinear, axially symmetric tensors, the proton is most
shielded, rather than least shielded, whenB0 lies along the
13C–H bond.

Qualitatively, a recognition of this slight “off-resonance”
character, even after one adopts a functional definition of being
“on-resonance,” makes it intuitively more reasonable to expect
some non-Lorentzian character to the lineshapes for polycrys-
talline samples. That is to say,in an unoriented polycrystalline
sample, CW decoupling cannot simultaneously maximize
T 2

C(ORPI) for the same carbon species in all crystallites.This
effect is fairly minor, however. In fact, the predicted contribu-
tion to “on-resonance” linewidths due to their actually being
“off-resonance” by 0.6 ppm is typically about 3% (8% maxi-
mum) of the measured LWn(ORPI) values. Note, therefore,
that the experimentally observed dispersion inT 2

C
n(ORPI) be-

tween the OR-LPE and the LPE samples is significantly larger
than can be accounted for by any such resonance offset.

We digress now to comment on resolution relative to Bloch–
Siegert (B–S) shifts (8, 30). Since we have implicitly advo-
cated the use of largen1

H’s in this paper, there is an increased
possibility that unwanted line broadening may result from
accompanyinginhomogeneous RF fieldswhich, in turn, pro-
duce a distribution of B–S shifts across the sample. We show
here that such effects will usually be very small. B–S shifts
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originate from the counterrotating portion of the RF field.
Expressed in parts per million, the B–S shift on the protons,
dB–S

H (n1
H), is

dB–S
H ~n1

H ! 5 ~n1
H / 2n0

H !2 [11]

while that on the carbons in the presence of CW proton
decoupling,dB–S

C (n1
H), is

dB–S
C ~n1

H! 5 ~gC/gH !2$~n1
H !2/@~n0

H!2 2 ~n0
C!2#%

5 0.0675~n1
H /n0

H !2 5 0.270dB–S
H ~n1

H ! , @12#

wheren0
H andn0

C are, respectively, the Larmor frequencies of
the protons and carbons. Clearly the presence of (n0

H)2 in the
denominator of both expressions tends to make B–S shifts
more dominant (in ppm) at lowerB0 since acceptablen1

H’s
increase more slowly thanB0 itself. Our concern, however, is
not the B–S shifts themselves but B–Sbroadening.Also, we
only considerdB–S

C (n1
H) sincedB–S

H (n1
H) is a negligible effect for

this discussion.
If we supposen1

H is inhomogeneous, covering a range across
the sample fromn1

H(1 2 e) to n1
H(1 1 e), then assuming thate

! 1, the corresponding range of associated B–S shifts would
be about (4e)dB–S

C (n1
H), centered neardB–S

C (n1
H). As an example,

assumee 5 0.1. Then (4e)dB–S
C (n1

H) values for the following
pairs of (B0, n1

H) apply: 1.4 T, 55 kHz (50.023 ppm5 0.34
Hz); 2.35 T, 60 kHz (50.0095 ppm5 0.24 Hz); 4.7 T, 70 kHz
(50.0033 ppm5 0.16 Hz); and 9.4 T, 115 kHz (50.0022
ppm 5 0.22 Hz). Even ife 5 0.2, broadening will be limited
to about 0.5 Hz, so the Bloch–Siegert broadening is almost
negligible. Relative to the issue of RF inhomogeneity it is
probably fair to say that the most important advantage of
homogeneous RF fields is the increased ability to achieve RF
matching across a sample when fixed-amplitude, CW RF fields
are used for cross-polarization at highernr (39).

Consider, finally, the non-ORPI, linewidth contributions of
Fig. 9a. These mainly inhomogeneous contributions were
placed into two categories, namely, those accounted for by
adamantane linewidths (attributable toB0 inhomogeneities and
Bloch–Siegert effects) and those arising from all the other
possible mechanisms including (a) contributions from second-
order dipolar effects (more important at lower fields because,
expressed in parts per million, these dispersions have aB0

22

dependence), (b) molecular motion (a contribution less than 2
Hz in LPE at ambient temperature), (c) chemical shift disper-
sion, and (d) anisotropic magnetic susceptibility effects. The
interpretation we give to Fig. 9a is that about 0.12 ppm of
linewidth in LPE is attributable to reasons (c) and/or (d), where
it is recognized that a substance like LPE is a very favorable
case relative to mechanism (d) given that aromatic materials
often have contributions 5–10 times larger (4). The upswing in
the LPE data at 1.4 T is most likely to be the consequence of
second-order dipolar effects (13, 14).

CONCLUSIONS

Ambient temperature linewidths have been measured for the
carbons in the crystalline region of linear polyethylene (LPE) in
an unoriented and an oriented sample. The behavior of these
carbons should be representative of methylene carbons at natural
abundance in other rigid solids. Methine carbons should also show
many parallel behaviors. Carryover of these results to methylene
linewidths in highly enriched materials should be reasonably
good, once allowance is made for the additional line-broadening
mechanisms associated with the13C–13C couplings (3).

Measurements have spanned a rather wide range of static
field (B0), RF field strength (n1

H), MAS frequency (nr), and
RF-frequency offset (DnRF). Observed13C linewidths are made
up of both inhomogeneous and homogeneous contributions.
The latter contributions tend to become more important at
higherB0, where, in the absence of molecular motion, theT 2

C’s
are dominated by proton chemical shift effects which give rise
to line broadening associated with off-resonance proton irra-
diation (ORPI). Corresponding linewidth contributions are des-
ignated LW(ORPI).

By adopting the “effective-field” picture of CW decoupling, we
have been able to explain the dependences of LW(ORPI) onB0,
n1

H, nr, and DnRF. These explanations cover the very different
dependences of LW(ORPI) onnr when the source of the deviation
from proton resonance is a constant, e.g.,DnRF, versus when the
source has MAS-modulated, second-rank-tensor properties.
Thereby we understand how highernr aids in reducing LW(ORPI)
contributions originating from proton chemical shift dispersions
and why there is little dependence onnr for the LW(ORPI)
contributions arising from proton chemical shift anisotropy or
from dipolar fields associated with third nuclei.

Estimates of proton spin fluctuation times,ts, in the presence of
CW decoupling have been made, based on thenr dependence of
linewidth-versus-DnRF plots. In the fitting process for obtainingts

and the use of the deducedts for predicting on-resonance values
of LW(ORPI), there is also some evidence of a shorter time scale
for polarization exchange between protons within a13CH2 group
compared to the time scale for exchange between one of these
protons and a more distant proton.

This work on the characterization of LW(ORPI) has signif-
icance for developing a perspective on the utility of phase
modulation schemes like two-pulse phase modulation (TPPM)
since TPPM is designed to reduce LW(ORPI) contributions.
While the LPE data provide “typical” LW(ORPI) values for a
rigid methylene carbon in a rigid hydrocarbon solid, these
results will not necessarily be typical for LW(ORPI) when
protons experience dipolar fields from third magnetic nuclei or
when carbons are embedded in samples containing particles
with large magnetic susceptibility. In those cases, LW(ORPI)
may be much larger. Yet, this paper gives a framework for
predicting these effects.

Since, for LPE, the fraction of the observed linewidth cor-
responding to LW(ORPI) increases steadily withB0, TPPM
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becomes more inviting at higherB0. A perspective, however, is
that even atB0 5 9.4 T, only about 37–45% of the observed
linewidth is attributed to LW(ORPI) for the largern1

H’s, where
linewidth contributions from MAS-assisted dipolar fluctua-
tions (MADF) are small.

In choosing experimental parameters for good resolution,
the LPE data reported herein also indicate that the MADF
influence on observed linewidths can be dominant, growing
quickly asn1

H is reduced. This is a matter of concern, especially
becausenr values much higher than those used herein are now
available in commercial probes. Moreover, there is a natural
tendency to use a highernr at higherB0.

One can consider a recipe for a minimum acceptable RF
field, (n1

H)min, for reasonable CW decoupling. A consideration
only of LW(ORPI) would dictate that this field increase ap-
proximately as (B0)

1/2 in order to preserve constant resolution
(in ppm) as one changesB0. This relationship is predicated on
the following assumptions, namely, that the observed line-
width, LWppm (in ppm) will take the formk1 1 k2B0(n1

H )22,
wherek1 represents an inhomogeneous linewidth contribution,
assumed constant in units of parts per million, andk2 can be
obtained from an expression like Eq. [10]. Then, in order to
keep LWppm fixed as a function ofB0, n1

H 5 [k2B0/(LWppm 2
k1)]

1/2, i.e., (n1
H)min } (B0)

1/2. On the other hand, a consider-
ation of MADF effects implies that the main dependence to
account for is thenr dependence. One tries to choose a (n1

H)min

such that one stays above the threshold for the strong broad-
ening illustrated in Fig. 10. From thenr dependence of the 9.4
T data shown, we anticipate the following relationship: (n1

H)min

' (n1
H)* 1 kmnr, where (n1

H)* is the minimumn1
H required for

avoiding the threshold of MADF contributions in the limit of
slow spinning and 2# km # 3. If we assume that the maximum
nr we might wish to use at a givenB0 is proportional toB0, then
(n1

H)min ' (n1
H)* 1 k3B0, wherek3 is a constant. The latter

expression has aB0 dependence stronger than that of the
condition associated with LW(ORPI). So there is aB0 (which
depends on the maximumnr one desires at a particularB0)
above which MADF contributions rather than LW(ORPI) con-
tributions will determine (n1

H)min. An important distinction to
be dealt with experimentally is whether or not MADF contri-
butions to linewidths are subject to any control via strategies
like TPPM; we are doubtful that TPPM will be effective in
reducing this contribution. Certainly the existence of strong
MADF contributions to linewidth at very highnr ('25 kHz)
has been verified (40).

The different measurements made on the OR-LPE and LPE
samples have pointed to significant orbit-dependent disper-
sions, in both the homogeneous and the inhomogeneous con-
tributions to linewidth. Moreover, it is demonstrated that in a
polycrystalline sample, one cannot simultaneously optimize
T 2

C
n(ORPI) for the same kind of carbon in each crystallite.

Lineshape analyses based on assumed Lorentzian or Gaussian
lineshapes should be regarded as strictly utilitarian approaches
with little underlying justification.

Finally, a brief look at linewidths in crystalline methyl-a-D-
glucopyranoside tetraacetate (MGT) indicated that both methyl-
ene and methine carbons have behavior which parallels that of
LPE in the sense that for modestDnRF values, LWf(ORPI) varies
with (DnRF)

2, and for “on-resonance” CW decoupling, (a) MADF
effects can be very prominent at lowern1

H and/or highernr and (b)
one sees an approximately linear dependence of LWn(ORPI) on
(n1

H)22. For methine carbons, however, the latter dependence
shows quite varied strengths. It is surmised that this difference in
sensitivity is a result of the differing tensor directions for the
13C–H dipolar interaction relative to that of the chemical shift
anisotropy of the corresponding proton. A notable difference
between the MGT and the LPE results was that the lineshapes in
MGT looked more “heterogeneous” (less smooth) than in LPE;
this may be a result of the lower proton density in MGT. In
contrast to the methylene and methine carbons, the methyl and
unprotonated carbons of MGT had greatly reduced dependences
of linewidth onDnRF, n1

H, andnr, as expected.
This work has elucidated the mechanisms of important

T 2
C(ORPI) contributions to linewidth associated with rigid

methylene (and methine) carbons in highly protonated solids
and has identified that portion of the linewidth, LW(ORPI),
which can be dealt with, in principle, with alternate decoupling
strategies like TPPM. As mentioned, a very important remain-
ing issue is whether TPPM, or other strategies, can deal with
the influence of MAS-assisted dipolar fluctuations. Also, more
work needs to be done in other rigid systems that possess both
methine and methylene carbons in environments of varied
proton density. In LPE,nr values up to 8 kHz seemed to cause
little change in the intrinsic dipolar fluctuation rates. More
information is needed over a wider range ofnr in order to
investigate (a) lineshape behavior in the regime wherenr

begins to lengthen spin lifetimes, and (b) the role that proton
distributions have in determining thenr at which spin fluctua-
tions begin to slow down.
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